一种针对有序数据集合的查找算法:二分查找(Binary Search)算法,也叫折半查找算法。
二分查找针对的是一个有序的数据集合,查找思想有点类似分治思想。每次都通过跟区间的中间元素对比,将待查找的区间缩小为之前的一半,直到找到要查找的元素,或者区间被缩小为 0。
惊人的查找速度 O(logn)
我们假设数据大小是 n,每次查找后数据都会缩小为原来的一半,也就是会除以 2。最坏情况下,直到查找区间被缩小为空,才停止。
可以看出来,这是一个等比数列。其中 n/2k=1 时,k 的值就是总共缩小的次数。而每一次缩小操作只涉及两个数据的大小比较,所以,经过了 k 次区间缩小操作,时间复杂度就是 O(k)。通过 n/2k=1,我们可以求得 ,所以时间复杂度就是 O(logn)。
除了二分查找,后面还会遇到的 堆、二叉树的操作,它们时间复杂度也是 O(logn)。这里就再深入地讲讲 O(logn) 这种对数时间复杂度。这是一种极其高效的时间复杂度,有的时候甚至比时间复杂度是常量级O(1) 的算法还要高效。为什么这么说呢?
因为 logn 是一个非常“恐怖”的数量级,即便 n 非常非常大,对应的 logn 也很小。比如 n 等于 2 的 32 次方,这个数很大了吧?大约是 42 亿。也就是说,如果我们在 42 亿个数据中用二分查找一个数据,最多需要比较 32 次。
我们前面讲过,用大 O 标记法表示时间复杂度的时候,会省略掉常数、系数和低阶。对于常量级时间复杂度的算法来说,O(1) 有可能表示的是一个非常大的常量值,比如 O(1000)、O(10000)。所以,常量级时间复杂度的算法有时候可能还没有O(logn) 的算法执行效率高。
反过来,对数对应的就是指数。指数时间复杂度的算法在大规模数据面前是无效的。
二分查找的递归与非递归实现
简单的二分查找并不难写,下一节,我们会讲到二分查找的变体问题,那才是真正烧脑的。我们来看如何来写最简单的二分查找。
最简单的情况就是有序数组中不存在重复元素,我们在其中用二分查找值等于给定值的数据。
稍微解释一下思路,low、high、mid 都是指数组下标,其中 low 和 high 表示当前查找的区间范围,初始 low=0, high=n-1。mid 表示 [low, high] 的中间位置。我们通过对比 a[mid] 与 value 的大小,来更新接下来要查找的区间范围,直到找到或者区间缩小为 0,就退出。
着重强调一下容易出错的 3 个地方。
- 循环退出条件
注意是 low<=high,而不是 low<high
- mid 的取值
mid=(low+high)/2 这种写法是有问题的。因为如果 low 和 high 比较大的话,两者之和就有可能会溢出。改进的方法是将 mid 的计算方式写成 low+(high-low)/2。更进一步,如果要将性能优化到极致的话,我们可以将这里的除以 2 操作转化成位运算 low+((high-low)>>1)。因为相比除法运算来说,计算机处理位运算要快得多。
- low 和 high 的更新
low=mid+1,high=mid-1。注意这里的 +1 和 -1,如果直接写成 low=mid 或者 high=mid,就可能会发生死循环。比如,当 high=3,low=3 时,如果 a[3] 不等于value,就会导致一直循环不退出。
简单二分查找的相关代码请移步 Leooel 的博客。
二分查找应用场景的局限性
二分查找的时间复杂度是 O(logn),查找数据的效率非常高。不过,并不是什么情况下都可以用二分查找,它的应用场景是有很大局限性的。那什么情况下适合用二分查找,什么情况下不适合呢?
- 首先,二分查找依赖的是顺序表结构,简单点说就是数组。
二分查找只能用在数据是通过顺序表来存储的数据结构上。如果你的数据是通过其他数据结构存储的,则无法应用二分查找。
- 其次,二分查找针对的是有序数据。
二分查找对这一点的要求比较苛刻,数据必须是有序的。如果数据没有序,我们需要先排序。前面章节里我们讲到,排序的时间复杂度最低是 O(nlogn)。所以,如果我们针对的是一组静态的数据,没有频繁地插入、删除,我们可以进行一次排序,多次二分查找。这样排序的成本可被均摊,二分查找的边际成本就会比较低。
但是,如果我们的数据集合有频繁的插入和删除操作,要想用二分查找,要么每次插入、删除操作之后保证数据仍然有序,要么在每次二分查找之前都先进行排序。针对这种动态数据集合,无论哪种方法,维护有序的成本都是很高的。
所以,二分查找只能用在插入、删除操作不频繁,一次排序多次查找的场景中。针对动态变化的数据集合,二分查找将不再适用。那针对动态数据集合,如何在其中快速查找某个数据呢?二叉树那节会讲到。
- 再次,数据量太小不适合二分查找。
数据量很小时,顺序遍历就足够了,完全没有必要用二分查找。只有数据量比较大的时候,二分查找的优势才会比较明显。
有一个例外。如果数据之间的比较操作非常耗时,不管数据量大小,都推荐使用二分查找。比如,数组中存储的都是长度超过 300 的字符串,如此长的两个字符串之间比对大小,就会非常耗时。我们需要尽可能地减少比较次数,而比较次数的减少会大大提高性能,这个时候二分查找就比顺序遍历更有优势。
- 最后,数据量太大也不适合二分查找。
二分查找的底层需要依赖数组这种数据结构,而数组为了支持随机访问的特性,要求内存空间连续,对内存的要求比较苛刻。比如,我们有 1GB 大小的数据,如果希望用数组来存储,那就需要 1GB 的连续内存空间。
注意这里的“连续”二字,也就是说,即便有 2GB 的内存空间剩余,但是如果这剩余的 2GB 内存空间都是零散的,没有连续的 1GB 大小的内存空间,那照样无法申请一个 1GB 大小的内存空间,那照样无法申请一个 1GB 大小的数组。而我们的二分查找是作用在数组这种数据结构之上的,所以太大的数据用数组存储就比较吃力了,也就不能用二分查找了。
开篇解答
如何在 1000 万个整数中快速查找某个整数?内存限制是 100MB,每个数据大小是 8 字节。
最简单的办法就是将数据存储在数组中,内存占用差不多是 80M,符合内存的限制。借助今天讲的内容,我们可以先对这 1000 万数据从小到大排序,然后再利用二分查找算法,就可以快速地查找想要的数据了。
虽然大部分情况下,用二分查找可以解决的问题,用散列表、二叉树都可以解决。后面会讲,不管是散列表还是二叉树,都会需要比较多的额外的内存空间。而这里是有内存限制的。
而二分查找底层依赖的是数组,除了数据本身之外,不需要额外存储其他信息,是最省内存空间的存储方式,所以刚好能在限定的内存大小下解决这个问题。
小结
二分查找,一种针对有序数据的高效查找算法,它的时间复杂度是 O(logn)。
二分查找虽然性能比较优秀,但应用场景也比较有限。底层必须依赖数组,并且还要求数据是有序的。对于较小规模的数据查找,我们直接使用顺序遍历就可以了,二分查找的优势并不明显。二分查找更适合处理静态数据,也就是没有频繁的数据插入、删除操作。
课后思考
如何编程实现“求一个数的平方根”?要求精确到小数点后 6 位。
我刚才说了,如果数据使用链表存储,二分查找的时间复杂就会变得很高,那查找的时间复杂度究竟是多少呢?如果你自己推导一下,你就会深刻地认识到,为何我们会选择用数组而不是链表来实现二分查找了。