Fast R-CNN详解

Test过程:

1. 用selective search方法提取图片的2000个proposal,并保存到文件

2. 将图片输入到已经训好的CNN 网络,在ROI pooling Layer的地方,对每一个proposal,提取到其对应的ROI

3. 对每一个ROI, 将其划分成固定大小的网格,并且在每一个小网格中,对该网格中所有的值取最大,得到固定大小的feture map,并将其输入到后续的fc层,最后一层输出201类别相关信息和4个boundinf box的修正偏移量

4. 对bounding box 按照上述得到的位置偏移量进行修正,再根据nms对所有的proposal进行筛选,即可得到对该张图片的bounding box预测值以及每个bounding box对应的类和score

Training过程:

1. 对训练集中所有的图片,用selective search提取出各图片对应的2000个proposal,并保存。(图片路径+bounding box信息)

2. 对每张图片,根据图片中bounding box的ground truth信息,给该图片的2000个proposal赋类标签,并保存。(这2000个proposal,如果跟ground truth中的proposal的IoU值超过了阈值(IOU>=0.5),则把ground truth中的proposal对应的类标签赋给原始产生的这个proposal,其余的proposal(IOU [0.1, 0.5))都标为background)

3. 使用mini-batch=128,25%来自有非背景标签的proposal,其余来自标记为背景的proposal(最开始的理解:具体在这个过程中,mini-batch有两个层次,一个是对于同一张图片,64个proposal组成的mini-batch,另一个是完成单张图片的导数计算后,两张图片是一个mini-batch,更新的时候对两张图片求得的值取平均来更新权重),其实,就是ROI pooling layer以前,batch size=2,ROI pooling layer之后,batch size=128

4. 训练CNN,最后一层的结果包含类信息和位置修正信息,所以用多任务的loss,一个是分类的损失函数,一个是位置的损失函数

补充:

1. mini-batch的问题:ROI pooling layer前后,batch size发生了变化

2. 为什么一开始要resize到一个确定的值:为了控制显存,防止在训练过程中,因为某张图片特别大导致显存不够,程序崩了

3. 为什么比R-CNN快?(1)避免了overlap部分的多次重复计算,虽然引入了一些bounding box之外的计算。Fast R-CNN是在一张图上做的,如果图片很大,proposal很小,而且少,极少有overlap,那么R-CNN更快。(2)另一方面,R-CNN在SVM之前,需要把所有的图片再跑一次得到fc7 feature,而Fast R-CNN不需要。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容