1、选型要点概述
衡量一款消息中间件是否符合需求需要从多个维度进行考察,首要的就是功能维度,这个直接决定了你能否最大程度上的实现开箱即用,进而缩短项目周期、降低成本等。如果一款消息中间件的功能达不到想要的功能,那么就需要进行二次开发,这样会增加项目的技术难度、复杂度以及增大项目周期等。
1.2 功能
功能维度又可以划分个多个子维度,大致可以分为以下这些:
优先级队列
优先级队列不同于先进先出队列,优先级高的消息具备优先被消费的特权,这样可以为下游提供不同消息级别的保证。不过这个优先级也是需要有一个前提的:如果消费者的消费速度大于生产者的速度,并且消息中间件服务器(一般简单的称之为Broker)中没有消息堆积,那么对于发送的消息设置优先级也就没有什么实质性的意义了,因为生产者刚发送完一条消息就被消费者消费了,那么就相当于Broker中至多只有一条消息,对于单条消息来说优先级是没有什么意义的。
延迟队列
当你在网上购物的时候是否会遇到这样的提示:“三十分钟之内未付款,订单自动取消”?这个是延迟队列的一种典型应用场景。延迟队列存储的是对应的延迟消息,所谓“延迟消息”是指当消息被发送以后,并不想让消费者立刻拿到消息,而是等待特定时间后,消费者才能拿到这个消息进行消费。延迟队列一般分为两种:基于消息的延迟和基于队列的延迟。基于消息的延迟是指为每条消息设置不同的延迟时间,那么每当队列中有新消息进入的时候就会重新根据延迟时间排序,当然这也会对性能造成极大的影响。实际应用中大多采用基于队列的延迟,设置不同延迟级别的队列,比如5s、10s、30s、1min、5mins、10mins等,每个队列中消息的延迟时间都是相同的,这样免去了延迟排序所要承受的性能之苦,通过一定的扫描策略(比如定时)即可投递超时的消息。
死信队列
由于某些原因消息无法被正确的投递,为了确保消息不会被无故的丢弃,一般将其置于一个特殊角色的队列,这个队列一般称之为死信队列。与此对应的还有一个“回退队列”的概念,试想如果消费者在消费时发生了异常,那么就不会对这一次消费进行确认(Ack),进而发生回滚消息的操作之后消息始终会放在队列的顶部,然后不断被处理和回滚,导致队列陷入死循环。为了解决这个问题,可以为每个队列设置一个回退队列,它和死信队列都是为异常的处理提供的一种机制保障。实际情况下,回退队列的角色可以由死信队列和重试队列来扮演。
重试队列
重试队列其实可以看成是一种回退队列,具体指消费端消费消息失败时,为防止消息无故丢失而重新将消息回滚到Broker中。与回退队列不同的是重试队列一般分成多个重试等级,每个重试等级一般也会设置重新投递延时,重试次数越多投递延时就越大。举个例子:消息第一次消费失败入重试队列Q1,Q1的重新投递延迟为5s,在5s过后重新投递该消息;如果消息再次消费失败则入重试队列Q2,Q2的重新投递延迟为10s,在10s过后再次投递该消息。以此类推,重试越多次重新投递的时间就越久,为此需要设置一个上限,超过投递次数就入死信队列。重试队列与延迟队列有相同的地方,都是需要设置延迟级别,它们彼此的区别是:延迟队列动作由内部触发,重试队列动作由外部消费端触发;延迟队列作用一次,而重试队列的作用范围会向后传递。
消费模式
消费模式分为推(push)模式和拉(pull)模式。推模式是指由Broker主动推送消息至消费端,实时性较好,不过需要一定的流制机制来确保服务端推送过来的消息不会压垮消费端。而拉模式是指消费端主动向Broker端请求拉取(一般是定时或者定量)消息,实时性较推模式差,但是可以根据自身的处理能力而控制拉取的消息量。
广播消费
消息一般有两种传递模式:点对点(P2P,Point-to-Point)模式和发布/订阅(Pub/Sub)模式。对于点对点的模式而言,消息被消费以后,队列中不会再存储,所以消息消费者不可能消费到已经被消费的消息。虽然队列可以支持多个消费者,但是一条消息只会被一个消费者消费。发布订阅模式定义了如何向一个内容节点发布和订阅消息,这个内容节点称为主题(topic),主题可以认为是消息传递的中介,消息发布者将消息发布到某个主题,而消息订阅者则从主题中订阅消息。主题使得消息的订阅者与消息的发布者互相保持独立,不需要进行接触即可保证消息的传递,发布/订阅模式在消息的一对多广播时采用。RabbitMQ是一种典型的点对点模式,而Kafka是一种典型的发布订阅模式。但是RabbitMQ中可以通过设置交换器类型来实现发布订阅模式而达到广播消费的效果,Kafka中也能以点对点的形式消费,你完全可以把其消费组(consumer group)的概念看成是队列的概念。不过对比来说,Kafka中因为有了消息回溯功能的存在,对于广播消费的力度支持比RabbitMQ的要强。
消息回溯
一般消息在消费完成之后就被处理了,之后再也不能消费到该条消息。消息回溯正好相反,是指消息在消费完成之后,还能消费到之前被消费掉的消息。对于消息而言,经常面临的问题是“消息丢失”,至于是真正由于消息中间件的缺陷丢失还是由于使用方的误用而丢失一般很难追查,如果消息中间件本身具备消息回溯功能的话,可以通过回溯消费复现“丢失的”消息进而查出问题的源头之所在。消息回溯的作用远不止与此,比如还有索引恢复、本地缓存重建,有些业务补偿方案也可以采用回溯的方式来实现。
消息顺序性
顾名思义,消息顺序性是指保证消息有序。这个功能有个很常见的应用场景就是CDC(Change Data Chapture),以MySQL为例,如果其传输的binlog的顺序出错,比如原本是先对一条数据加1,然后再乘以2,发送错序之后就变成了先乘以2后加1了,造成了数据不一致。
消息幂等性
对于确保消息在生产者和消费者之间进行传输而言一般有三种传输保障(delivery guarantee):At most once,至多一次,消息可能丢失,但绝不会重复传输;At least once,至少一次,消息绝不会丢,但是可能会重复;Exactly once,精确一次,每条消息肯定会被传输一次且仅一次。对于大多数消息中间件而言,一般只提供At most once和At least once两种传输保障,对于第三种一般很难做到,由此消息幂等性也很难保证。
Kafka自0.11版本开始引入了幂等性和事务,Kafka的幂等性是指单个生产者对于单分区单会话的幂等,而事务可以保证原子性地写入到多个分区,即写入到多个分区的消息要么全部成功,要么全部回滚,这两个功能加起来可以让Kafka具备EOS(Exactly Once Semantic)的能力。
不过如果要考虑全局的幂等,还需要与从上下游方面综合考虑,即关联业务层面,幂等处理本身也是业务层面所需要考虑的重要议题。以下游消费者层面为例,有可能消费者消费完一条消息之后没有来得及确认消息就发生异常,等到恢复之后又得重新消费原来消费过的那条消息,那么这种类型的消息幂等是无法有消息中间件层面来保证的。如果要保证全局的幂等,需要引入更多的外部资源来保证,比如以订单号作为唯一性标识,并且在下游设置一个去重表。
事务性消息
事务本身是一个并不陌生的词汇,事务是由事务开始(Begin Transaction)和事务结束(End Transaction)之间执行的全体操作组成。支持事务的消息中间件并不在少数,Kafka和RabbitMQ都支持,不过此两者的事务是指生产者发生消息的事务,要么发送成功,要么发送失败。消息中间件可以作为用来实现分布式事务的一种手段,但其本身并不提供全局分布式事务的功能。
消息堆积+持久化
流量削峰是消息中间件的一个非常重要的功能,而这个功能其实得益于其消息堆积能力。从某种意义上来讲,如果一个消息中间件不具备消息堆积的能力,那么就不能把它看做是一个合格的消息中间件。消息堆积分内存式堆积和磁盘式堆积。RabbitMQ是典型的内存式堆积,但这并非绝对,在某些条件触发后会有换页动作来将内存中的消息换页到磁盘(换页动作会影响吞吐),或者直接使用惰性队列来将消息直接持久化至磁盘中。Kafka是一种典型的磁盘式堆积,所有的消息都存储在磁盘中。一般来说,磁盘的容量会比内存的容量要大得多,对于磁盘式的堆积其堆积能力就是整个磁盘的大小。从另外一个角度讲,消息堆积也为消息中间件提供了冗余存储的功能。
消息追踪
对于分布式架构系统中的链路追踪(trace)而言,大家一定不会陌生。对于消息中间件而言,消息的链路追踪(以下简称消息追踪)同样重要。对于消息追踪最通俗的理解就是要知道消息从哪来,存在哪里以及发往哪里去。基于此功能下,我们可以对发送或者消费完的消息进行链路追踪服务,进而可以进行问题的快速定位与排查。
1.2 性能
功能维度是消息中间件选型中的一个重要的参考维度,但这并不是唯一的维度。有时候性能比功能还要重要,况且性能和功能很多时候是相悖的,鱼和熊掌不可兼得,Kafka在开启幂等、事务功能的时候会使其性能降低,RabbitMQ在开启rabbitmq_tracing插件的时候也会极大的影响其性能。
吞吐量
消息中间件的性能一般是指其吞吐量,虽然从功能维度上来说,RabbitMQ的优势要大于Kafka,但是Kafka的吞吐量要比RabbitMQ高出1至2个数量级,一般RabbitMQ的单机QPS在万级别之内,而Kafka的单机QPS可以维持在十万级别,甚至可以达到百万级。
消息中间件的吞吐量始终会受到硬件层面的限制。就以网卡带宽为例,如果单机单网卡的带宽为1Gbps,如果要达到百万级的吞吐,那么消息体大小不得超过(1Gb/8)/100W,即约等于134B,换句话说如果消息体大小超过134B,那么就不可能达到百万级别的吞吐。这种计算方式同样可以适用于内存和磁盘。
时延
时延作为性能维度的一个重要指标,却往往在消息中间件领域所被忽视,因为一般使用消息中间件的场景对时效性的要求并不是很高,如果要求时效性完全可以采用RPC的方式实现。消息中间件具备消息堆积的能力,消息堆积越大也就意味着端到端的时延也就越长,与此同时延时队列也是某些消息中间件的一大特色。那么为什么还要关注消息中间件的时延问题呢?消息中间件能够解耦系统,对于一个时延较低的消息中间件而言,它可以让上游生产者发送消息之后可以迅速的返回,也可以让消费者更加快速的获取到消息,在没有堆积的情况下可以让整体上下游的应用之间的级联动作更加高效,虽然不建议在时效性很高的场景下使用消息中间件,但是如果所使用的消息中间件的时延方面比较优秀,那么对于整体系统的性能将会是一个不小的提升。
1.3 可靠性+可用性
消息丢失是使用消息中间件时所不得不面对的一个同点,其背后消息可靠性也是衡量消息中间件好坏的一个关键因素。尤其是在金融支付领域,消息可靠性尤为重要。然而说到可靠性必然要说到可用性,注意这两者之间的区别,消息中间件的可靠性是指对消息不丢失的保障程度;而消息中间件的可用性是指无故障运行的时间百分比,通常用几个9来衡量。
从狭义的角度来说,分布式系统架构是一致性协议理论的应用实现,对于消息可靠性和可用性而言也可以追溯到消息中间件背后的一致性协议。对于Kafka而言,其采用的是类似PacificA的一致性协议,通过ISR(In-Sync-Replica)来保证多副本之间的同步,并且支持强一致性语义(通过acks实现)。对应的RabbitMQ是通过镜像环形队列实现多副本及强一致性语义的。多副本可以保证在master节点宕机异常之后可以提升slave作为新的master而继续提供服务来保障可用性。Kafka设计之初是为日志处理而生,给人们留下了数据可靠性要求不要的不良印象,但是随着版本的升级优化,其可靠性得到极大的增强。就目前而言,在金融支付领域使用RabbitMQ居多,而在日志处理、大数据等方面Kafka使用居多。
这里还要提及的一个方面是扩展能力,这里我狭隘地将此归纳到可用性这一维度,消息中间件的扩展能力能够增强其用可用能力及范围,比如前面提到的RabbitMQ支持多种消息协议,这个就是基于其插件化的扩展实现。还有从集群部署上来讲,归功于Kafka的水平扩展能力,其基本上可以达到线性容量提升的水平,在LinkedIn实践介绍中就提及了有部署超过千台设备的Kafka集群。
1.4 运维管理
在消息中间件的使用过程中难免会出现各式各样的异常情况,有客户端的,也有服务端的,那么怎样及时有效的进行监测及修复。业务线流量有峰值又低谷,尤其是电商领域,那么怎样前进行有效的容量评估,尤其是大促期间?脚踢电源、网线被挖等事件层出不穷,如何有效的做好异地多活?这些都离不开消息中间件的衍生产品——运维管理。
运维管理也可以进行进一步的细分,比如:申请、审核、监控、告警、管理、容灾、部署等。
申请、审核很好理解,在源头对资源进行管控,既可以进行有效校正应用方的使用规范,配和监控也可以做好流量统计与流量评估工作,一般申请、审核与公司内部系统交融性较大,不适合使用开源类的产品。
监控、告警也比较好理解,对消息中间件的使用进行全方位的监控,即可以为系统提供基准数据,也可以在检测到异常的情况配合告警,以便运维、开发人员的迅速介入。除了一般的监控项(比如硬件、GC等)之外,对于消息中间件还需要关注端到端时延、消息审计、消息堆积等方面。对于RabbitMQ而言,最正统的监控管理工具莫过于rabbitmq_management插件了,但是社区内还有AppDynamics, Collectd, DataDog, Ganglia, Munin, Nagios, New Relic, Prometheus, Zenoss等多种优秀的产品。Kafka在此方面也毫不逊色,比如:Kafka Manager, Kafka Monitor, Kafka Offset Monitor, Burrow, Chaperone, Confluent Control Center等产品,尤其是Cruise还可以提供自动化运维的功能。
不管是扩容、降级、版本升级、集群节点部署、还是故障处理都离不开管理工具的应用,一个配套完备的管理工具集可以在遇到变更时做到事半功倍。故障可大可小,一般是一些应用异常,也可以是机器掉电、网络异常、磁盘损坏等单机故障,这些故障单机房内的多副本足以应付。如果是机房故障就要涉及异地容灾了,关键点在于如何有效的进行数据复制,对于Kafka而言,可以参考MirrorMarker、uReplicator等产品,而RabbitMQ可以参考Federation和Shovel。
1.5 社区力度及生态发展
对于目前流行的编程语言而言,如Java、Python,如果你在使用过程中遇到了一些异常,基本上可以通过搜索引擎的帮助来得到解决,因为一个产品用的人越多,踩过的坑也就越多,对应的解决方案也就越多。对于消息中间件也同样适用,如果你选择了一种“生僻”的消息中间件,可能在某些方面运用的得心应手,但是版本更新缓慢、遇到棘手问题也难以得到社区的支持而越陷越深;相反如果你选择了一种“流行”的消息中间件,其更新力度大,不仅可以迅速的弥补之前的不足,而且也能顺应技术的快速发展来变更一些新的功能,这样可以让你以“站在巨人的肩膀上”。在运维管理维度我们提及了Kafka和RabbitMQ都有一系列开源的监控管理产品,这些正是得益于其社区及生态的迅猛发展。
2、Kafka、RabbitMQ、RocketMQ对比
2.1 吐吞量测试结论
Kafka的吞吐量高达17.3w/s,不愧是高吞吐量消息中间件的行业老大。这主要取决于它的队列模式保证了写磁盘的过程是线性IO。此时broker磁盘IO已达瓶颈。
RocketMQ也表现不俗,吞吐量在11.6w/s,磁盘IO %util已接近100%。RocketMQ的消息写入内存后即返回ack,由单独的线程专门做刷盘的操作,所有的消息均是顺序写文件。
RabbitMQ的吞吐量5.95w/s,CPU资源消耗较高。它支持AMQP协议,实现非常重量级,为了保证消息的可靠性在吞吐量上做了取舍。我们还做了RabbitMQ在消息持久化场景下的性能测试,吞吐量在2.6w/s左右。
在服务端处理同步发送的性能上,Kafka>RocketMQ>RabbitMQ。
2.2 对比
功能 | Apache RocketMQ | Apache Kafka | RabbitMQ |
---|---|---|---|
安全防护 | 不支持 | 不支持 | 支持 |
主子账号支持 | 不支持 | 不支持 | 不支持 |
可靠性 | - 同步刷盘 - 异步刷盘 | 异步刷盘,丢数据概率高 | 同步刷盘 |
可用性 | 好 | 好 | 好 |
横向扩展能力 | 支持 | 支持 | - 集群扩容依赖前端 - LVS 负载均衡调度 |
Low Latency | 不支持 | 不支持 | 不支持 |
消费模型 | Push / Pull | Pull | Push / Pull |
定时消息 | 支持(只支持18个固定 Level) | 不支持 | 支持 |
事务消息 | 不支持 | 不支持 | 不支持 |
顺序消息 | 支持 | 支持 | 不支持 |
全链路消息轨迹 | 不支持 | 不支持 | 不支持 |
消息堆积能力 | 百亿级别 影响性能 | 影响性能 | 影响性能 |
消息堆积查询 | 支持 | 不支持 | 不支持 |
消息回溯 | 支持 | 不支持 | 不支持 |
消息重试 | 支持 | 不支持 | 支持 |
死信队列 | 支持 | 不支持 | 支持 |
性能(常规) | 非常好 十万级 QPS | 非常好 百万级 QPS | 一般 万级 QPS |
性能(万级 Topic 场景) | 非常好 十万级 QPS | 低 | 低 |
性能(海量消息堆积场景) | 非常好 十万级 QPS | 低 | 低 |