前言
💖💖作者:计算机程序员小杨
💙💙个人简介:我是一名计算机相关专业的从业者,擅长Java、微信小程序、Python、Golang、安卓Android等多个IT方向。会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。热爱技术,喜欢钻研新工具和框架,也乐于通过代码解决实际问题,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💕💕文末获取源码联系 计算机程序员小杨
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目
计算机毕业设计选题
💜💜
一.开发工具简介
大数据框架:Hadoop+Spark(本次没用Hive,支持定制)
开发语言:Python+Java(两个版本都支持)
后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持)
前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery
详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy
数据库:MySQL
二.系统内容简介
《基于大数据的青光眼数据可视化分析系统》是一个面向医疗大数据分析的综合性平台,采用Hadoop+Spark大数据技术架构,结合Python开发语言和Django后端框架,前端采用Vue+ElementUI+Echarts技术栈构建现代化用户界面。系统核心功能涵盖系统首页、个人中心、用户管理、青光眼信息管理等基础模块,重点突出数据可视化大屏展示功能,通过患者群体画像分析、核心临床指标分析、疾病风险因素分析、症状用药分析以及青光眼亚型分析等多维度分析模块,为医疗工作者提供全面的青光眼疾病数据洞察。系统底层采用HDFS分布式文件存储和Spark SQL进行大数据处理,结合Pandas、NumPy等数据科学工具库进行深度数据挖掘,MySQL数据库确保数据存储的稳定性和可靠性。通过Echarts图表组件实现丰富的数据可视化效果,包括患者分布统计、病情发展趋势、治疗效果对比等多种图表展示形式,帮助医疗机构更好地理解青光眼患者的整体状况,为临床决策提供科学依据,同时为大数据技术在医疗健康领域的应用提供了完整的解决方案。
三.系统功能演示
毕设技术栈不熟悉?选题没思路?基于大数据的青光眼可视化分析系统助你紧跟技术前沿
四.系统界面展示








五.系统源码展示
# 患者群体画像分析核心业务处理
def analyze_patient_portrait(request):
# 获取所有患者基础数据
patients = GlaucomaPatient.objects.all()
age_groups = {'18-30': 0, '31-45': 0, '46-60': 0, '60+': 0}
gender_stats = {'male': 0, 'female': 0}
region_stats = {}
severity_stats = {'early': 0, 'moderate': 0, 'severe': 0}
# 年龄分布统计
for patient in patients:
age = patient.age
if 18 <= age <= 30:
age_groups['18-30'] += 1
elif 31 <= age <= 45:
age_groups['31-45'] += 1
elif 46 <= age <= 60:
age_groups['46-60'] += 1
else:
age_groups['60+'] += 1
# 性别统计
if patient.gender == 'M':
gender_stats['male'] += 1
else:
gender_stats['female'] += 1
# 地区分布统计
if patient.region in region_stats:
region_stats[patient.region] += 1
else:
region_stats[patient.region] = 1
# 病情严重程度统计
if patient.severity == 'early':
severity_stats['early'] += 1
elif patient.severity == 'moderate':
severity_stats['moderate'] += 1
else:
severity_stats['severe'] += 1
# 计算患病率和高危因素相关性
total_patients = patients.count()
high_pressure_patients = patients.filter(intraocular_pressure__gt=21).count()
family_history_patients = patients.filter(family_history=True).count()
diabetes_patients = patients.filter(has_diabetes=True).count()
portrait_data = {
'age_distribution': age_groups,
'gender_distribution': gender_stats,
'region_distribution': region_stats,
'severity_distribution': severity_stats,
'high_pressure_rate': round((high_pressure_patients / total_patients) * 100, 2),
'family_history_rate': round((family_history_patients / total_patients) * 100, 2),
'diabetes_correlation': round((diabetes_patients / total_patients) * 100, 2),
'total_patients': total_patients
}
return JsonResponse({'status': 'success', 'data': portrait_data})
# 核心临床指标分析业务处理
def analyze_clinical_indicators(request):
# 获取所有临床检查记录
clinical_records = ClinicalRecord.objects.select_related('patient').all()
iop_data = [] # 眼压数据
cup_disc_ratio_data = [] # 杯盘比数据
visual_field_data = [] # 视野缺损数据
nerve_fiber_data = [] # 神经纤维层厚度数据
# 按患者ID分组统计临床指标变化趋势
patient_indicators = {}
for record in clinical_records:
patient_id = record.patient.id
if patient_id not in patient_indicators:
patient_indicators[patient_id] = {
'iop_history': [],
'cup_disc_history': [],
'visual_field_history': [],
'nerve_fiber_history': [],
'treatment_response': []
}
patient_indicators[patient_id]['iop_history'].append({
'date': record.check_date,
'value': record.intraocular_pressure
})
patient_indicators[patient_id]['cup_disc_history'].append({
'date': record.check_date,
'value': record.cup_disc_ratio
})
patient_indicators[patient_id]['visual_field_history'].append({
'date': record.check_date,
'value': record.visual_field_defect
})
patient_indicators[patient_id]['nerve_fiber_history'].append({
'date': record.check_date,
'value': record.nerve_fiber_thickness
})
iop_data.append(record.intraocular_pressure)
cup_disc_ratio_data.append(record.cup_disc_ratio)
visual_field_data.append(record.visual_field_defect)
nerve_fiber_data.append(record.nerve_fiber_thickness)
# 计算各项指标的统计特征
iop_stats = {
'mean': sum(iop_data) / len(iop_data),
'max': max(iop_data),
'min': min(iop_data),
'abnormal_count': len([x for x in iop_data if x > 21])
}
cup_disc_stats = {
'mean': sum(cup_disc_ratio_data) / len(cup_disc_ratio_data),
'max': max(cup_disc_ratio_data),
'min': min(cup_disc_ratio_data),
'abnormal_count': len([x for x in cup_disc_ratio_data if x > 0.5])
}
# 分析治疗效果
treatment_effectiveness = {}
for patient_id, indicators in patient_indicators.items():
if len(indicators['iop_history']) >= 2:
initial_iop = indicators['iop_history'][0]['value']
latest_iop = indicators['iop_history'][-1]['value']
improvement_rate = ((initial_iop - latest_iop) / initial_iop) * 100
treatment_effectiveness[patient_id] = improvement_rate
clinical_analysis = {
'iop_statistics': iop_stats,
'cup_disc_statistics': cup_disc_stats,
'treatment_effectiveness': treatment_effectiveness,
'patient_indicators': patient_indicators,
'abnormal_indicators_trend': {
'high_iop_patients': len([x for x in iop_data if x > 21]),
'high_cup_disc_patients': len([x for x in cup_disc_ratio_data if x > 0.5])
}
}
return JsonResponse({'status': 'success', 'data': clinical_analysis})
# 疾病风险因素分析业务处理
def analyze_risk_factors(request):
# 获取患者数据和风险因素
patients = GlaucomaPatient.objects.all()
risk_factor_analysis = {}
correlation_matrix = {}
# 定义风险因素列表
risk_factors = ['age', 'family_history', 'high_myopia', 'diabetes', 'hypertension', 'smoking']
# 统计各风险因素的患病率
for factor in risk_factors:
if factor == 'age':
high_risk_age = patients.filter(age__gt=40).count()
risk_factor_analysis[factor] = {
'total_patients': high_risk_age,
'risk_rate': round((high_risk_age / patients.count()) * 100, 2)
}
elif factor == 'family_history':
family_history_patients = patients.filter(family_history=True).count()
risk_factor_analysis[factor] = {
'total_patients': family_history_patients,
'risk_rate': round((family_history_patients / patients.count()) * 100, 2)
}
elif factor == 'high_myopia':
myopia_patients = patients.filter(has_high_myopia=True).count()
risk_factor_analysis[factor] = {
'total_patients': myopia_patients,
'risk_rate': round((myopia_patients / patients.count()) * 100, 2)
}
elif factor == 'diabetes':
diabetes_patients = patients.filter(has_diabetes=True).count()
risk_factor_analysis[factor] = {
'total_patients': diabetes_patients,
'risk_rate': round((diabetes_patients / patients.count()) * 100, 2)
}
elif factor == 'hypertension':
hypertension_patients = patients.filter(has_hypertension=True).count()
risk_factor_analysis[factor] = {
'total_patients': hypertension_patients,
'risk_rate': round((hypertension_patients / patients.count()) * 100, 2)
}
elif factor == 'smoking':
smoking_patients = patients.filter(is_smoker=True).count()
risk_factor_analysis[factor] = {
'total_patients': smoking_patients,
'risk_rate': round((smoking_patients / patients.count()) * 100, 2)
}
# 计算风险因素组合分析
multi_risk_patients = patients.filter(
age__gt=40,
family_history=True
).count()
high_risk_combination = patients.filter(
has_diabetes=True,
has_hypertension=True,
age__gt=50
).count()
# 风险评分计算
risk_scores = {}
for patient in patients:
score = 0
if patient.age > 40:
score += 2
if patient.age > 60:
score += 3
if patient.family_history:
score += 4
if patient.has_high_myopia:
score += 2
if patient.has_diabetes:
score += 3
if patient.has_hypertension:
score += 2
if patient.is_smoker:
score += 1
risk_scores[patient.id] = {
'score': score,
'level': 'low' if score <= 3 else 'medium' if score <= 7 else 'high'
}
# 统计不同风险等级的患者分布
risk_level_distribution = {'low': 0, 'medium': 0, 'high': 0}
for patient_id, risk_info in risk_scores.items():
risk_level_distribution[risk_info['level']] += 1
risk_analysis_result = {
'individual_risk_factors': risk_factor_analysis,
'multi_risk_combinations': {
'age_family_history': multi_risk_patients,
'diabetes_hypertension_age': high_risk_combination
},
'risk_scores': risk_scores,
'risk_level_distribution': risk_level_distribution,
'high_risk_patient_count': risk_level_distribution['high'],
'prevention_recommendations': {
'high_risk': '建议每3个月复查一次,密切监控眼压变化',
'medium_risk': '建议每6个月复查一次,注意生活方式调整',
'low_risk': '建议每年进行常规眼部检查'
}
}
return JsonResponse({'status': 'success', 'data': risk_analysis_result})
六.系统文档展示

结束
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目
计算机毕业设计选题
💕💕文末获取源码联系 计算机程序员小杨