概念
排序类的算法,有很强的实践需求,是非常基础的一类算法。在找工作面试中,排序算法也是大概率出现。本文将讲述排序常用的算法:归并排序,快速排序和插入排序。
归并排序
假如有一组乱序序列:a1, a2, a3 ... an,现在要将它从小到大的排序。
思想
- 如果排序的序列长度为1,则返回
- 将a1 ... an拆分为两个序列: a1...an/2, an/2 +1 .... an
- 递归对a1...an/2排序,递归对 an/2 +1 .... an排序
- 合并3步的两个有序序列的结果
案列
待排序列:1, 23, 3, 4, 8, 9,7
拆分归并如下图。可以看到,相当于树从下往上处理。
代码
···
public void testMergeSort() {
int[] from = {1, 23, 3, 4, 8, 9, 7};
mergeSort(from, 0, from.length - 1);
Arrays.stream(from).forEach(System.out :: println);
}
public void mergeSort(int[] from, int start, int end) {
if (start >= end) {
return;
}
int mid = (end + start) / 2;
mergeSort(from, start, mid);
mergeSort(from, mid + 1, end);
merge(from, start, mid, end);
}
/**
*
*
* @param from
* @param low the begin position for from and to
* @param mid the mergeFrom1 end position
* @param high the merge from2 end position
*/
public void merge(int[] from, final int low, final int mid, final int high) {
int firstPosition = low;
int firstEndPosition = mid;
int secondPosition = mid + 1;
int secondEndPosition = high;
int length = high - low + 1;
int[] to = new int[high - low + 1];
int i = 0;
while (i <= length - 1) {
if (firstPosition <= firstEndPosition && secondPosition <= secondEndPosition) {
if (from[firstPosition] > (from[secondPosition])) {
to[i ++] = from[secondPosition ++];
} else {
to[i ++] = from[firstPosition ++];
}
} else if (firstPosition <= firstEndPosition) {
to[i ++] = from[firstPosition ++];
} else if (secondPosition <= secondEndPosition) {
to[i ++] = from[secondPosition];
}
}
System.arraycopy(to, 0, from, low, length);
}
···