1.创建工程结构目录如下
data目录
包含train目录与validation目录,将需要训练的图片放入到对应的文件夹中,名称可以自命名
saved_models目录
储存训练完成后的模型
4.mp4
视屏文件,训练完成之后可通过这个视屏文件进行预测
model_cnn_train.py
模型训练文件
详细代码如下
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'ding'
from __future__ import print_function
import keras
import matplotlib.pyplot as plt
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
import os
batch_size = 32 # 训练时每个批次的样本数 训练样本数/批次样本数 = 批次数(每个周期)
# num_classes = 10
num_classes = 2 # 2类别 可增加或减少需要识别的类别,对应train、validation目录下的目录个数,例如我这里只有两个类别 这里的classes就是2
# epochs = 100
epochs = 50 # 训练50周期,训练集所有样本(数据、记录)参与训练一次为一个周期
# data_augmentation = True
# num_predictions = 20
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'keras_face_trained_model.h5'
img_w = 150
img_h = 150
# LossHistory类,保存loss和acc
class LossHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.losses = {'batch': [], 'epoch': []}
self.accuracy = {'batch': [], 'epoch': []}
self.val_loss = {'batch': [], 'epoch': []}
self.val_acc = {'batch': [], 'epoch': []}
def on_batch_end(self, batch, logs={}):
self.losses['batch'].append(logs.get('loss'))
self.accuracy['batch'].append(logs.get('acc'))
self.val_loss['batch'].append(logs.get('val_loss'))
self.val_acc['batch'].append(logs.get('val_acc'))
def on_epoch_end(self, batch, logs={}):
self.losses['epoch'].append(logs.get('loss'))
self.accuracy['epoch'].append(logs.get('acc'))
self.val_loss['epoch'].append(logs.get('val_loss'))
self.val_acc['epoch'].append(logs.get('val_acc'))
def loss_plot(self, loss_type):
iters = range(len(self.losses[loss_type]))
plt.figure()
# acc
plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
# loss
plt.plot(iters, self.losses[loss_type], 'g', label='train loss')
if loss_type == 'epoch':
# val_acc
plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
# val_loss
plt.plot(iters, self.val_loss[loss_type], 'k', label='val loss')
plt.grid(True)
plt.xlabel(loss_type)
plt.ylabel('acc-loss')
plt.legend(loc="upper right")
plt.show()
'''''
# The data, shuffled and split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
'''
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
# input_shape=x_train.shape[1:]))
input_shape=(150, 150, 3))) # 输入数据是图片转换的矩阵格式,150(行)x 150(列) x 3 (通道)(每个像素点3个单位,分别表示RGB(红绿蓝))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
# initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)
# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
# x_train = x_train.astype('float32')
# x_test = x_test.astype('float32')
# x_train /= 255
# x_test /= 255
# 创建history实例
history = LossHistory()
'''''
if not data_augmentation:
print('Not using data augmentation.')
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True)
else:
print('Using real-time data augmentation.')
# This will do preprocessing and realtime data augmentation:
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
# Compute quantities required for feature-wise normalization
# (std, mean, and principal components if ZCA whitening is applied).
datagen.fit(x_train)
# Fit the model on the batches generated by datagen.flow().
model.fit_generator(datagen.flow(x_train, y_train,
batch_size=batch_size),
epochs=epochs,
validation_data=(x_test, y_test),
workers=4)
'''
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. / 255)
# 训练样本初始化处理:长宽调整,批次大小调整,数据打乱排序(shuffle=True),分类区分(binary:2分类、categorical:多分类)
train_generator = train_datagen.flow_from_directory(
'./data/train', # 训练样本
target_size=(img_w, img_h), # 图片格式调整为 150x150
batch_size=batch_size,
shuffle=True,
class_mode='categorical') # matt,多分类
validation_generator = test_datagen.flow_from_directory(
'./data/validation', # 验证样本
target_size=(img_w, img_h),
batch_size=batch_size,
shuffle=True,
class_mode='categorical') # matt,多分类
# 模型适配生成
model.fit_generator(
train_generator, # 训练集
samples_per_epoch=2400, # 训练集总样本数,如果提供样本数量不够,则调整图片(翻转、平移等)补足数量(本例,该函数补充2400-240个样本)
nb_epoch=epochs,
validation_data=validation_generator, # 验证集
nb_val_samples=800, # 验证集总样本数,如果提供样本数量不够,则调整图片(翻转、平移等)补足数量(本例,该函数补充800-60个样本)
callbacks=[history]) # 回调函数,绘制批次(epoch)和精确度(acc)关系图表函数
# Save model and weights
if not os.path.isdir(save_dir): # 没有save_dir对应目录则建立
os.makedirs(save_dir)
model_path = os.path.join(save_dir, model_name)
model.save(model_path)
print('Saved trained model at %s ' % model_path)
# 显示批次(epoch)和精确度(acc)关系图表
history.loss_plot('epoch')
# 模型结构图
from keras.utils import plot_model
plot_model(model, to_file='model.png', show_shapes=True)
# Score trained model.
# scores = model.evaluate(x_test, y_test, verbose=1)
# print('Test loss:', scores[0])
# print('Test accuracy:', scores[1])
video_face_sign.py
模型预测
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'ding'
import os
import numpy as np
import sys
import time
import cv2
import dlib
from keras.preprocessing import image as imagekeras
from keras.models import load_model
from PIL import Image, ImageDraw, ImageFont
size = 150
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'keras_face_trained_model.h5'
# 类别编码转换为中文名称返回
def return_name(codelist):
#
names = ['XXX', 'XXX'] #这里的XXX为中文名字,识别出来的以此处的名字作为标记出现,顺序应该与train目录下的顺序一致
for it in range(0, len(codelist), 1):
if int(codelist[it]) == 1.0:
return names[it]
# 类别编码转换为英文名称返回
def return_name_en(codelist):
names = ['ding', 'tss']#train目录下的名称与这里的名称需要保持一致
for it in range(0, len(codelist), 1):
if int(codelist[it]) == 1.0:
return names[it]
# 区分和标记视频中截图的人脸
def face_rec():
global image_ouput
model = load_model(os.path.join(save_dir, model_name))
camera = cv2.VideoCapture("4.mp4") # 视频
# camera_img = cv2.imread()
# camera = cv2.VideoCapture(0) # 摄像头
while (True):
read, img = camera.read()
try:
# 未截取视频图片结束本次循环
if not (type(img) is np.ndarray):
continue
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 图片转为灰度图
except:
print("Unexpected error:", sys.exc_info()[0])
break
# 使用detector进行人脸检测
# 使用dlib自带的frontal_face_detector作为我们的特征提取器
detector = dlib.get_frontal_face_detector()
dets = detector(gray_img, 1) # 提取截图中所有人脸
facelist = []
for i, d in enumerate(dets): # 依次区分截图中的人脸
x1 = d.top() if d.top() > 0 else 0
y1 = d.bottom() if d.bottom() > 0 else 0
x2 = d.left() if d.left() > 0 else 0
y2 = d.right() if d.right() > 0 else 0
img = cv2.rectangle(img, (x2, x1), (y2, y1), (255, 0, 0), 2) # 人脸画框
face = img[x1:y1, x2:y2]
face = cv2.resize(face, (size, size))
x_input = np.expand_dims(face, axis=0)
prey = model.predict(x_input)
print(prey, 'prey')
facelist.append([d, return_name(prey[0])]) # 存储一张图中多张人脸坐标和标记(姓名)
cv2_im = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # cv2和PIL中颜色的hex码的储存顺序不同
pil_im = Image.fromarray(cv2_im)
draw = ImageDraw.Draw(pil_im) # 括号中为需要打印的cqanvas,这里就是在图片上直接打印
font = ImageFont.truetype("simhei.ttf", 20, encoding="utf-8") # 第一个参数为字体文件路径,第二个为字体大小
try:
for i in facelist:
# 人脸标记写入图片,第一个参数为打印的坐标,第二个为打印的文本,第三个为字体颜色,第四个为字体
draw.text((i[0].left() + int((i[0].right() - i[0].left()) / 2 - len(i[1]) * 10), i[0].top() - 20), i[1],
(255, 0, 0), font=font)
except:
print("Unexpected error:", sys.exc_info()[0])
continue
# PIL图片转换为cv2图片
cv2_char_img = cv2.cvtColor(np.array(pil_im), cv2.COLOR_RGB2BGR)
# 显示图片
cv2.imshow("camera", cv2_char_img)
if cv2.waitKey(1) & 0xff == ord("q"):
break
cv2.destroyAllWindows()
if __name__ == "__main__":
face_rec()
关键库版本
keras==2.1.0
tensorflow==1.4.0
dlib==19.7.0
dlib在win7环境下的安装可直接用whl文件安装
dlib 工具
https://download.csdn.net/download/u014258362/10473197