人脸识别--(opencv、dlib、keras-TensorFlow)

1.创建工程结构目录如下

image.png
data目录

包含train目录与validation目录,将需要训练的图片放入到对应的文件夹中,名称可以自命名

saved_models目录

储存训练完成后的模型

4.mp4

视屏文件,训练完成之后可通过这个视屏文件进行预测

model_cnn_train.py

模型训练文件
详细代码如下

#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'ding'
from __future__ import print_function
import keras
import matplotlib.pyplot as plt
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
import os

batch_size = 32  # 训练时每个批次的样本数    训练样本数/批次样本数 = 批次数(每个周期)
# num_classes = 10
num_classes = 2  # 2类别  可增加或减少需要识别的类别,对应train、validation目录下的目录个数,例如我这里只有两个类别 这里的classes就是2
# epochs = 100
epochs = 50  # 训练50周期,训练集所有样本(数据、记录)参与训练一次为一个周期
# data_augmentation = True
# num_predictions = 20
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'keras_face_trained_model.h5'

img_w = 150
img_h = 150


# LossHistory类,保存loss和acc
class LossHistory(keras.callbacks.Callback):
    def on_train_begin(self, logs={}):
        self.losses = {'batch': [], 'epoch': []}
        self.accuracy = {'batch': [], 'epoch': []}
        self.val_loss = {'batch': [], 'epoch': []}
        self.val_acc = {'batch': [], 'epoch': []}

    def on_batch_end(self, batch, logs={}):
        self.losses['batch'].append(logs.get('loss'))
        self.accuracy['batch'].append(logs.get('acc'))
        self.val_loss['batch'].append(logs.get('val_loss'))
        self.val_acc['batch'].append(logs.get('val_acc'))

    def on_epoch_end(self, batch, logs={}):
        self.losses['epoch'].append(logs.get('loss'))
        self.accuracy['epoch'].append(logs.get('acc'))
        self.val_loss['epoch'].append(logs.get('val_loss'))
        self.val_acc['epoch'].append(logs.get('val_acc'))

    def loss_plot(self, loss_type):
        iters = range(len(self.losses[loss_type]))
        plt.figure()
        # acc
        plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
        # loss
        plt.plot(iters, self.losses[loss_type], 'g', label='train loss')
        if loss_type == 'epoch':
            # val_acc
            plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
            # val_loss
            plt.plot(iters, self.val_loss[loss_type], 'k', label='val loss')
        plt.grid(True)
        plt.xlabel(loss_type)
        plt.ylabel('acc-loss')
        plt.legend(loc="upper right")
        plt.show()


''''' 
# The data, shuffled and split between train and test sets: 
(x_train, y_train), (x_test, y_test) = cifar10.load_data() 
print('x_train shape:', x_train.shape) 
print(x_train.shape[0], 'train samples') 
print(x_test.shape[0], 'test samples') 
 
# Convert class vectors to binary class matrices. 
y_train = keras.utils.to_categorical(y_train, num_classes) 
y_test = keras.utils.to_categorical(y_test, num_classes) 
'''

model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
                 # input_shape=x_train.shape[1:]))
                 input_shape=(150, 150, 3)))  # 输入数据是图片转换的矩阵格式,150(行)x 150(列) x 3 (通道)(每个像素点3个单位,分别表示RGB(红绿蓝))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))

# initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)

# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
              optimizer=opt,
              metrics=['accuracy'])

# x_train = x_train.astype('float32')
# x_test = x_test.astype('float32')
# x_train /= 255
# x_test /= 255

# 创建history实例
history = LossHistory()
''''' 
if not data_augmentation: 
    print('Not using data augmentation.') 
    model.fit(x_train, y_train, 
              batch_size=batch_size, 
              epochs=epochs, 
              validation_data=(x_test, y_test), 
              shuffle=True) 
else: 
    print('Using real-time data augmentation.') 
    # This will do preprocessing and realtime data augmentation: 
    datagen = ImageDataGenerator( 
        featurewise_center=False,  # set input mean to 0 over the dataset 
        samplewise_center=False,  # set each sample mean to 0 
        featurewise_std_normalization=False,  # divide inputs by std of the dataset 
        samplewise_std_normalization=False,  # divide each input by its std 
        zca_whitening=False,  # apply ZCA whitening 
        rotation_range=0,  # randomly rotate images in the range (degrees, 0 to 180) 
        width_shift_range=0.1,  # randomly shift images horizontally (fraction of total width) 
        height_shift_range=0.1,  # randomly shift images vertically (fraction of total height) 
        horizontal_flip=True,  # randomly flip images 
        vertical_flip=False)  # randomly flip images 
 
    # Compute quantities required for feature-wise normalization 
    # (std, mean, and principal components if ZCA whitening is applied). 
    datagen.fit(x_train) 
 
    # Fit the model on the batches generated by datagen.flow(). 
    model.fit_generator(datagen.flow(x_train, y_train, 
                                     batch_size=batch_size), 
                        epochs=epochs, 
                        validation_data=(x_test, y_test), 
                        workers=4) 
'''
train_datagen = ImageDataGenerator(
    rescale=1. / 255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True)

test_datagen = ImageDataGenerator(rescale=1. / 255)

# 训练样本初始化处理:长宽调整,批次大小调整,数据打乱排序(shuffle=True),分类区分(binary:2分类、categorical:多分类)
train_generator = train_datagen.flow_from_directory(
    './data/train',  # 训练样本
    target_size=(img_w, img_h),  # 图片格式调整为 150x150
    batch_size=batch_size,
    shuffle=True,
    class_mode='categorical')  # matt,多分类

validation_generator = test_datagen.flow_from_directory(
    './data/validation',  # 验证样本
    target_size=(img_w, img_h),
    batch_size=batch_size,
    shuffle=True,
    class_mode='categorical')  # matt,多分类

# 模型适配生成
model.fit_generator(
    train_generator,  # 训练集
    samples_per_epoch=2400,  # 训练集总样本数,如果提供样本数量不够,则调整图片(翻转、平移等)补足数量(本例,该函数补充2400-240个样本)
    nb_epoch=epochs,
    validation_data=validation_generator,  # 验证集
    nb_val_samples=800,  # 验证集总样本数,如果提供样本数量不够,则调整图片(翻转、平移等)补足数量(本例,该函数补充800-60个样本)
    callbacks=[history])  # 回调函数,绘制批次(epoch)和精确度(acc)关系图表函数

# Save model and weights
if not os.path.isdir(save_dir):  # 没有save_dir对应目录则建立
    os.makedirs(save_dir)
model_path = os.path.join(save_dir, model_name)
model.save(model_path)
print('Saved trained model at %s ' % model_path)

# 显示批次(epoch)和精确度(acc)关系图表
history.loss_plot('epoch')

# 模型结构图
from keras.utils import plot_model

plot_model(model, to_file='model.png', show_shapes=True)

# Score trained model.
# scores = model.evaluate(x_test, y_test, verbose=1)
# print('Test loss:', scores[0])
# print('Test accuracy:', scores[1])

video_face_sign.py

模型预测

#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'ding'
import os
import numpy as np
import sys
import time
import cv2
import dlib

from keras.preprocessing import image as imagekeras
from keras.models import load_model
from PIL import Image, ImageDraw, ImageFont

size = 150
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'keras_face_trained_model.h5'


# 类别编码转换为中文名称返回
def return_name(codelist):
    #
    names = ['XXX', 'XXX'] #这里的XXX为中文名字,识别出来的以此处的名字作为标记出现,顺序应该与train目录下的顺序一致
    for it in range(0, len(codelist), 1):
        if int(codelist[it]) == 1.0:
            return names[it]


# 类别编码转换为英文名称返回
def return_name_en(codelist):
    names = ['ding', 'tss']#train目录下的名称与这里的名称需要保持一致
    for it in range(0, len(codelist), 1):
        if int(codelist[it]) == 1.0:
            return names[it]


# 区分和标记视频中截图的人脸
def face_rec():
    global image_ouput
    model = load_model(os.path.join(save_dir, model_name))
    camera = cv2.VideoCapture("4.mp4")  # 视频
    # camera_img = cv2.imread()
    # camera = cv2.VideoCapture(0) # 摄像头

    while (True):
        read, img = camera.read()
        try:
            # 未截取视频图片结束本次循环
            if not (type(img) is np.ndarray):
                continue
            gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 图片转为灰度图
        except:
            print("Unexpected error:", sys.exc_info()[0])
            break

        # 使用detector进行人脸检测
        # 使用dlib自带的frontal_face_detector作为我们的特征提取器
        detector = dlib.get_frontal_face_detector()
        dets = detector(gray_img, 1)  # 提取截图中所有人脸

        facelist = []
        for i, d in enumerate(dets):  # 依次区分截图中的人脸
            x1 = d.top() if d.top() > 0 else 0
            y1 = d.bottom() if d.bottom() > 0 else 0
            x2 = d.left() if d.left() > 0 else 0
            y2 = d.right() if d.right() > 0 else 0

            img = cv2.rectangle(img, (x2, x1), (y2, y1), (255, 0, 0), 2)  # 人脸画框

            face = img[x1:y1, x2:y2]
            face = cv2.resize(face, (size, size))

            x_input = np.expand_dims(face, axis=0)
            prey = model.predict(x_input)
            print(prey, 'prey')

            facelist.append([d, return_name(prey[0])])  # 存储一张图中多张人脸坐标和标记(姓名)

        cv2_im = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # cv2和PIL中颜色的hex码的储存顺序不同
        pil_im = Image.fromarray(cv2_im)

        draw = ImageDraw.Draw(pil_im)  # 括号中为需要打印的cqanvas,这里就是在图片上直接打印
        font = ImageFont.truetype("simhei.ttf", 20, encoding="utf-8")  # 第一个参数为字体文件路径,第二个为字体大小

        try:
            for i in facelist:
                # 人脸标记写入图片,第一个参数为打印的坐标,第二个为打印的文本,第三个为字体颜色,第四个为字体
                draw.text((i[0].left() + int((i[0].right() - i[0].left()) / 2 - len(i[1]) * 10), i[0].top() - 20), i[1],
                          (255, 0, 0), font=font)
        except:
            print("Unexpected error:", sys.exc_info()[0])
            continue

        # PIL图片转换为cv2图片
        cv2_char_img = cv2.cvtColor(np.array(pil_im), cv2.COLOR_RGB2BGR)
        # 显示图片
        cv2.imshow("camera", cv2_char_img)
        if cv2.waitKey(1) & 0xff == ord("q"):
            break
    cv2.destroyAllWindows()


if __name__ == "__main__":
    face_rec()

关键库版本
keras==2.1.0
tensorflow==1.4.0
dlib==19.7.0

dlib在win7环境下的安装可直接用whl文件安装
dlib 工具
https://download.csdn.net/download/u014258362/10473197

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容