Kubernetes——Deployment水平更新以及滚动更新

控制器

控制循环


for {
  实际状态 := 获取集群中对象X的实际状态(Actual State)
  期望状态 := 获取集群中对象X的期望状态(Desired State)
  if 实际状态 == 期望状态{
    什么都不做
  } else {
    执行编排动作,将实际状态调整为期望状态
  }
}

以 Deployment 为例,我和你简单描述一下它对控制器模型的实现:

  1. Deployment 控制器从 Etcd 中获取到所有携带了“app: nginx”标签的 Pod,然后统计它们的数量,这就是实际状态;
  2. Deployment 对象的 Replicas 字段的值就是期望状态;
  3. Deployment 控制器将两个状态做比较,然后根据比较结果,确定是创建 Pod,还是删除已有的 Pod,这个比较多过程叫做调谐(Reconcile)。这个调谐的过程,则被称作“Reconcile Loop”(调谐循环)或者“Sync Loop”(同步循环)。

Deployment

Pod 的“水平扩展 / 收缩”(horizontal scaling out/in)以及更新,控制ReplicaSet实现

可以理解为:ReplicaSet 操作 pod实现水平扩展和水平收缩,deployment 操作replicaSet实现滚动更新

ReplicaSet 的 DESIRED、CURRENT 和 READY 字段的含义,和 Deployment 中是一致的。所以,相比之下,Deployment 只是在 ReplicaSet 的基础上,添加了 UP-TO-DATE 这个跟版本有关的状态字段。

水平扩展/收缩

kubectl scale deployment nginx-deployment --replicas=4

即deployment控制replicaSet的Pod数量属性即可

Deployment 和 ReplicaSet 和 Pod 关系图

滚动更新

一个应用的版本,对应的正是一个 ReplicaSet;这个版本应用的 Pod 数量,则由 ReplicaSet 通过它自己的控制器(ReplicaSet Controller)来保证。

  1. 修改更新内容
kubectl edit deployment/nginx-deployment
  1. 获取滚动更新状态
$ kubectl rollout status deployment/nginx-deployment
Waiting for rollout to finish: 2 out of 3 new replicas have been updated...
deployment.apps/nginx-deployment successfully rolled out

$ kubectl describe deployment nginx-deployment
...
Events:
  Type    Reason             Age   From                   Message
  ----    ------             ----  ----                   -------
...
  Normal  ScalingReplicaSet  24s   deployment-controller  Scaled up replica set nginx-deployment-1764197365 to 1
  Normal  ScalingReplicaSet  22s   deployment-controller  Scaled down replica set nginx-deployment-3167673210 to 2
  Normal  ScalingReplicaSet  22s   deployment-controller  Scaled up replica set nginx-deployment-1764197365 to 2
  Normal  ScalingReplicaSet  19s   deployment-controller  Scaled down replica set nginx-deployment-3167673210 to 1
  Normal  ScalingReplicaSet  19s   deployment-controller  Scaled up replica set nginx-deployment-1764197365 to 3
  Normal  ScalingReplicaSet  14s   deployment-controller  Scaled down replica set nginx-deployment-3167673210 to 0
  1. 可以看到,首先,当你修改了 Deployment 里的 Pod 定义之后,Deployment Controller 会使用这个修改后的 Pod 模板,创建一个新的 ReplicaSet(hash=1764197365),这个新的 ReplicaSet 的初始 Pod 副本数是:0。
  2. 然后,在 Age=24 s 的位置,Deployment Controller 开始将这个新的 ReplicaSet 所控制的 Pod 副本数从 0 个变成 1 个,即:“水平扩展”出一个副本。
  3. 紧接着,在 Age=22 s 的位置,Deployment Controller 又将旧的 ReplicaSet(hash=3167673210)所控制的旧 Pod 副本数减少一个。
    即:“水平收缩”成两个副本。如此交替进行,新 ReplicaSet 管理的 Pod 副本数,从 0 个变成 1 个,再变成 2 个,最后变成 3 个。而旧的 ReplicaSet 管理的 Pod 副本数则从 3 个变成 2 个,再变成 1 个,最后变成 0 个。这样,就完成了这一组 Pod 的版本升级过程。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 225,226评论 6 524
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 96,509评论 3 405
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 172,523评论 0 370
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 61,181评论 1 302
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 70,189评论 6 401
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 53,642评论 1 316
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 41,993评论 3 431
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 40,977评论 0 280
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 47,527评论 1 326
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 39,547评论 3 347
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 41,661评论 1 355
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 37,250评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,991评论 3 340
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 33,422评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 34,571评论 1 277
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 50,241评论 3 382
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 46,737评论 2 366