目前富集很多都是用Y叔的clusterprofier,或者使用GSVA,ssGSEA,但是是否还有其他的富集方式,实际上还是有的,不过中文的介绍很少,所以这活只能我来干了。。
源起
在一篇文章上看到这里面的kegg富集使用到gage
Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans | Nature
源码github
datapplab/gage: Generally Applicable Gene-set Enrichment for Pathway Analysis (github.com)
中文其他人的使用
RNA-seq(10):KEGG通路可视化:gage和pathview - 简书 (jianshu.com)
GAGE的原始论文
09年的老包了,但是看GitHub是还在更新,更新时间直到今年,引用也有上千
GAGE: generally applicable gene set enrichment for pathway analysis | BMC Bioinformatics | Full Text (biomedcentral.com)
研究一下使用方法
http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/gage.pdf
http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/RNA-seqWorkflow.pdf
rm(list = ls())
library(gage)
#preparation
library(gage)
data(gse16873)
数据内容如下
支持的物种
KEGG Organisms: Complete Genomes
hn=(1:6)*2-1
dcis=(1:6)*2
#KEGG pathway analysis
data(kegg.gs)
gse16873.kegg.p <- gage(gse16873, gsets = kegg.gs, ref = hn, samp = dcis)
#alternatively, you can also generate update KEGG gene sets:
kg.hsa <- kegg.gsets("hsa")
names(kg.hsa)
kegg.gs <- kg.hsa$kg.sets[kg.hsa$sigmet.idx]
#GO term analysis, separate BP, MF and CC categories, need to generate GO gene sets first
go.hs <- go.gsets(species="human")
names(go.hs)
go.sets.hs <- go.hs$go.sets
go.subs.hs <- go.hs$go.subs
gse16873.bp.p <- gage(gse16873, gsets = go.sets.hs[go.subs.hs$BP], ref = hn, samp = dcis)
gse16873.mf.p <- gage(gse16873, gsets = go.sets.hs[go.subs.hs$MF], ref = hn, samp = dcis)
gse16873.cc.p <- gage(gse16873, gsets = go.sets.hs[go.subs.hs$CC], ref = hn, samp = dcis)
学会一个包的好方法是把这个包的使用写出来,不然自己以后都忘记怎么样了,只要写的复杂就没人看(手动滑稽)未完待续。。