Random Forest VS Boosting VS Bagging

Random Forest与Bagging的区别在于:Bagging每次生成决策树的时候从全部的属性Attributes里面选择,而Random Forest是随机从全部Attributes的集合里面生成一个大小固定的子集,相对而言需要的计算量更小一些。

Boosting是一种提高任意给定学习算法准确度的方法。它的思想起源于 Valiant提出的 PAC ( Probably Approxi mately Correct)学习模型。Valiant和 Kearns提出了弱学习和强学习的概念 ,识别错误率小于1/2,也即准确率仅比随机猜测略高的学习算法称为弱学习算法;识别准确率很高并能在多项式时间内完成的学习算法称为强学习算法。同时 ,Valiant和 Kearns首次提出了 PAC学习模型中弱学习算法和强学习算法的等价性问题,即任意给定仅比随机猜测略好的弱学习算法 ,是否可以将其提升为强学习算法 ? 如果二者等价 ,那么只需找到一个比随机猜测略好的弱学习算法就可以将其提升为强学习算法 ,而不必寻找很难获得的强学习算法。

Adaboost算法

由于Boosting算法在解决实际问题时有一个重大的缺陷,即他们都要求事先知道弱分类算法分类正确率的下限,这在实际问题中很难做到。后来 Freund 和 Schapire提出了 AdaBoost 算法,该算法的效率与 Freund 方法的效率几乎一样,却可以非常容易地应用到实际问题中。AdaBoost 是Boosting 算法家族中代表算法,AdaBoost 主要是在整个训练集上维护一个分布权值向量 D( x) t ,用赋予权重的训练集通过弱分类算法产生分类假设 Ht ( x) ,即基分类器,然后计算他的错误率,用得到的错误率去更新分布权值向量 D( x) t ,对错误分类的样本分配更大的权值,正确分类的样本赋予更小的权值。每次更新后用相同的弱分类算法产生新的分类假设,这些分类假设的序列构成多分类器。对这些多分类器用加权的方法进行联合,最后得到决策结果。这种方法不要求产生的单个分类器有高的识别率,即不要求寻找识别率很高的基分类算法,只要产生的基分类器的识别率大于 015 ,就可作为该多分类器序列中的一员。

寻找多个识别率不是很高的弱分类算法比寻找一个识别率很高的强分类算法要容易得多,AdaBoost 算法的任务就是完成将容易找到的识别率不高的弱分类算法提升为识别率很高的强分类算法,这也是 AdaBoost 算法的核心指导思想所在,如果算法完成了这个任务,那么在分类时,只要找到一个比随机猜测略好的弱分类算法,就可以将其提升为强分类算法,而不必直接去找通常情况下很难获得的强分类算法。通过产生多分类器最后联合的方法提升弱分类算法,让他变为强的分类算法,也就是给定一个弱的学习算法和训练集,在训练集的不同子集上,多次调用弱学习算法,最终按加权方式联合多次弱学习算法的预测结果得到最终学习结果。包含以下2 点:

样本的权重

AdaBoost 通过对样本集的操作来训练产生不同的分类器,他是通过更新分布权值向量来改变样本权重的,也就是提高分错样本的权重,重点对分错样本进行训练。

(1) 没有先验知识的情况下,初始的分布应为等概分布,也就是训练集如果有 n个样本,每个样本的分布概率为1/ n。(2) 每次循环后提高错误样本的分布概率,分错的样本在训练集中所占权重增大,使得下一次循环的基分类器能够集中力量对这些错误样本进行判断。

弱分类器的权重

最后的强分类器是通过多个基分类器联合得到的,因此在最后联合时各个基分类器所起的作用对联合结果有很大的影响,因为不同基分类器的识别率不同,他的作用就应该不同,这里通过权值体现他的作用,因此识别率越高的基分类器权重越高,识别率越低的基分类器权重越低。权值计算如下:基分类器的错误率:e = ∑( ht ( x i) ≠yi) Di (1)基分类器的权重:W t = F( e) ,由基分类器的错误率计算他的权重。2.3 算法流程及伪码描述算法流程描述算法流程可用结构图 1 描述,如图 1 所示 AdaBoost重复调用弱学习算法(多轮调用产生多个分类器) ,首轮调用弱学习算法时,按均匀分布从样本集中选取子集作为该次训练集,以后每轮对前一轮训练失败的样本,赋予较大的分布权值( Di 为第i 轮各个样本在样本集中参与训练的概率) ,使其在这一轮训练出现的概率增加,即在后面的训练学习中集中对比较难训练的样本进行学习,从而得到 T个弱的基分类器, h1 , h2 , …, ht ,其中 ht 有相应的权值 w t ,并且其权值大小根据该分类器的效果而定。最后的分类器由生成的多个分类器加权联合产生。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,324评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,356评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,328评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,147评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,160评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,115评论 1 296
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,025评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,867评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,307评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,528评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,688评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,409评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,001评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,657评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,811评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,685评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,573评论 2 353

推荐阅读更多精彩内容