tensorflow和pytorch里卷积是如何实现的

一般我们认为在计算卷积时,是卷积核与图像中每个mxm大小的图像块做element-wise相乘,然后得到的结果相加得到一个值,然后再移动一个stride,做同样的运算,直到整副输入图像遍历完,上述过程得到的值就组成了输出特征。但是这样运算比较慢,我们用的深度学习框架可不是这么实现的。因此,我们来学习一下tensorflow和pytorch中是如何实现卷积操作的。

1、tf.nn.conv2d()

def conv2d(input,filter,strides,padding,use_cudnn_on_gpu=True,data_format="NHWC",dilations=[1,1,1,1],name=None):

给定 4-D input 和 filter tensors计算2-D卷积.

其中,input tensor 的 shape是: [B, H, W, C]

filter / kernel tensor 的 shape是:  [filter_height, filter_width, in_channels, out_channels]

这个op是这样执行的:

将filter 展开为一个 shape 为[filter_height * filter_width * in_channels, out_channels] 大小的2-D 矩阵。

从 input tensor按照每个filter位置上提取图像patches来构成一个虚拟的shape大小为[batch, out_height, out_width,filter_height * filter_width * in_channels]的tensor 。

ps:把输入图像要经行卷积操作的这一区域展成列向量的操作通常称为im2col

对每个patch, 右乘以 filter matrix.得到[batch, out_height, out_width,out_channels]大小的输出。

其中,out_height和out_width是根据输入尺寸等参数计算好的,不会计算的自行补充学习吧。

详细来说,使用默认的NHWC形式,

# 个人理解相当于在input每个卷积核的位置上(包含了同一位值对应的不同channel)提取的patches展开之后,与展开的filter kernel相乘。

看图很清楚,示意图参考[3].


2、torch.nn.Conv2d()

pytorch源码里面说的就没有tf里说的清楚了,点不动

其中,\star是2D的cross-correlation_(互相关运算符), N是batch_size。

互相关函数是许多机器学习的库中都会有实现的一个函数,和卷积运算几乎一样但是没有进行核的翻转。

参考资料:

[1]、https://github.com/tensorflow/tensorflow

[2]、https://buptldy.github.io/2016/10/01/2016-10-01-im2col/

[3]、https://blog.csdn.net/mieleizhi0522/article/details/80412804

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351