什么是图
—
一些理论
在线性结构中,数据元素之间满足唯一的线性关系,每个数据元素(除第一个和最后一个外)只有一个直接前趋和一个直接后继;
在树形结构中,数据元素之间有着明显的层次关系,并且每个数据元素只与上一层中的一个元素(parent node)及下一层的多个元素(孩子节点)相关;
在图形结构中,节点之间的关系是任意的,图中任意两个数据元素之间都有可能相关。
图G由两个集合V(顶点)和E(边)组成,定义为G=(V,E)。
图的分类
—
无向图
有向图
无权图
连接线上没有数值的图可以认为是无权图
有权图
其实所有的图都可以认为是有向图,无向图可以看为是两个方向的有向图
度
无向图
节点V的度是3
有向图分为入度和出度。
V的入度2,出度1。
对应现实生活中图的系统建模
—
比如对交通流量建模,顶点可以表示街道的十字路口,边表示街道。加权的边可以表示限速或者车道的数量。建模人员可以用这个系统来判断最佳路线及最有可能堵车的街道。
任何运输系统都可以用图来建模。比如,航空公司可以用图来为其飞行系统建模。将每个机场看成顶点,将经过两个顶点的每条航线看作一条边。加权的边可以看作从一个机场到另一个机场的航班成本,或两个机场之间的距离,这取决与建模的对象是什么。
包含局域网和广域网(如互联网)在内的计算机网络,同样经常用图来建模。
可以用图来建模的实现系统是消费市场,顶点可以用来表示供应商和消费者。
还有比如朋友圈,朋友的互相关系。
图在内存中的实现
—
概要
节点(Vertex) 与 边(Edge)
图的表示:
邻接表
和邻接矩阵(平时工作的很少这样表示)
-
邻接表的表示
邻接矩阵
这里可以分为 有向图 和无向图
无向图是一种特殊的有向图
-
有权图 和 无权图
图的遍历
对节点表示
public class Node {
public int value;
public int in; //入度
public int out; //出度
public ArrayList<Node> nexts; //相邻节点
public ArrayList<Edge> edges; //相邻边
public Node(int value) {
this.value = value;
in = 0;
out = 0;
nexts = new ArrayList<>();
edges = new ArrayList<>();
}
}
对边的表示
public class Edge {
public int weight;//权重
public Node from; //开始节点
public Node to; // 结束节点
public Edge(int weight, Node from, Node to) {
this.weight = weight;
this.from = from;
this.to = to;
}
对整个图的表示
public class Graph {
public HashMap<Integer,Node> nodes; // 所有的点
public HashSet<Edge> edges; // 所有的边
public Graph() {
nodes = new HashMap<>();
edges = new HashSet<>();
}
}
广度优先遍历(BFS)
public class GraphBFS {
// 从node 出发,进行广度
public static void bfs(Node start){
if (start ==null){
return;
}
Queue<Node> queue = new LinkedList<>();
HashSet<Node> set = new HashSet<>();
queue.add(start);
set.add(start);
System.out.println(start.value);
while (!queue.isEmpty()){
Node cur = queue.poll();
for (Node node:cur.nexts){
if (!set.contains(node)){
queue.add(node);
set.add(node);
System.out.println(start.value);
}
}
}
}
深度优先遍历(DFS)
//一条路走到底
public static void dfs(Node node){
if (node==null){
return;
}
Stack<Node> stack = new Stack<>();
HashSet<Node> set = new HashSet<>();
stack.add(node);
set.add(node);
System.out.println(node.value);
while (!stack.isEmpty()){
Node cur = stack.pop();
for (Node find:cur.nexts){
if (!set.contains(find)){
stack.add(cur);
stack.add(find);
System.out.println(find.value);
break;
}
}
}
}
最小生成树
—
一般最小生成树有三种解决思想
kruska:从点开始找到最小的那棵树
Prim:边开始找最小的那棵树
Dijkstra:指定一个节点,计算 这个节点到其他节点的最短路径,有点类似全局最优解
代码
kruska 解法
// Union-Find Set
public static class UnionFind {
// key 某一个节点, value key节点往上的节点
private HashMap<Node, Node> fatherMap;
// key 某一个集合的代表节点, value key所在集合的节点个数
private HashMap<Node, Integer> sizeMap;
public UnionFind() {
fatherMap = new HashMap<Node, Node>();
sizeMap = new HashMap<Node, Integer>();
}
public void makeSets(Collection<Node> nodes) {
fatherMap.clear();
sizeMap.clear();
for (Node node : nodes) {
fatherMap.put(node, node);
sizeMap.put(node, 1);
}
}
private Node findFather(Node n) {
Stack<Node> path = new Stack<>();
while(n != fatherMap.get(n)) {
path.add(n);
n = fatherMap.get(n);
}
while(!path.isEmpty()) {
fatherMap.put(path.pop(), n);
}
return n;
}
public boolean isSameSet(Node a, Node b) {
return findFather(a) == findFather(b);
}
public void union(Node a, Node b) {
if (a == null || b == null) {
return;
}
Node aDai = findFather(a);
Node bDai = findFather(b);
if (aDai != bDai) {
int aSetSize = sizeMap.get(aDai);
int bSetSize = sizeMap.get(bDai);
if (aSetSize <= bSetSize) {
fatherMap.put(aDai, bDai);
sizeMap.put(bDai, aSetSize + bSetSize);
sizeMap.remove(aDai);
} else {
fatherMap.put(bDai, aDai);
sizeMap.put(aDai, aSetSize + bSetSize);
sizeMap.remove(bDai);
}
}
}
}
public static class EdgeComparator implements Comparator<Edge> {
public int compare(Edge o1, Edge o2) {
return o1.weight - o2.weight;
}
}
public static Set<Edge> kruskalMST(Graph graph) {
UnionFind unionFind = new UnionFind();
unionFind.makeSets(graph.nodes.values());
// 从小的边到大的边,依次弹出,小根堆!
PriorityQueue<Edge> priorityQueue = new PriorityQueue<>(new EdgeComparator());
for (Edge edge : graph.edges) { // M 条边
priorityQueue.add(edge); // O(logM)
}
Set<Edge> result = new HashSet<>();
while (!priorityQueue.isEmpty()) { // M 条边
Edge edge = priorityQueue.poll(); // O(logM)
if (!unionFind.isSameSet(edge.from, edge.to)) { // O(1)
result.add(edge);
unionFind.union(edge.from, edge.to);
}
}
return result;
}
Prim解法
public static class EdgeComparator implements Comparator<Edge> {
public int compare(Edge o1, Edge o2) {
return o1.weight - o2.weight;
}
}
public static Set<Edge> primMST(Graph graph) {
// 解锁的边进入小根堆
PriorityQueue<Edge> priorityQueue = new PriorityQueue<>(new EdgeComparator());
// 哪些点被解锁出来了
HashSet<Node> nodeSet = new HashSet<>();
Set<Edge> result = new HashSet<>(); // 依次挑选的的边在result里
for (Node node : graph.nodes.values()) { // 随便挑了一个点
// node 是开始点
if (!nodeSet.contains(node)) {
nodeSet.add(node);
for (Edge edge : node.edges) { // 由一个点,解锁所有相连的边
priorityQueue.add(edge);
}
while (!priorityQueue.isEmpty()) {
Edge edge = priorityQueue.poll(); // 弹出解锁的边中,最小的边
Node toNode = edge.to; // 可能的一个新的点
if (!nodeSet.contains(toNode)) { // 不含有的时候,就是新的点
nodeSet.add(toNode);
result.add(edge);
for (Edge nextEdge : toNode.edges) {
priorityQueue.add(nextEdge);
}
}
}
}
// break;
}
return result;
}
Dijkstra 普通解法
public static HashMap<Node, Integer> dijkstra1(Node from) {
HashMap<Node, Integer> distanceMap = new HashMap<>();
distanceMap.put(from, 0);
// 打过对号的点
HashSet<Node> selectedNodes = new HashSet<>();
Node minNode = getMinDistanceAndUnselectedNode(distanceMap, selectedNodes);
while (minNode != null) {
// 原始点 -> minNode(跳转点) 最小距离distance
int distance = distanceMap.get(minNode);
for (Edge edge : minNode.edges) {
Node toNode = edge.to;
if (!distanceMap.containsKey(toNode)) {
distanceMap.put(toNode, distance + edge.weight);
} else { // toNode
distanceMap.put(edge.to, Math.min(distanceMap.get(toNode), distance + edge.weight));
}
}
selectedNodes.add(minNode);
minNode = getMinDistanceAndUnselectedNode(distanceMap, selectedNodes);
}
return distanceMap;
}
public static Node getMinDistanceAndUnselectedNode(HashMap<Node, Integer> distanceMap, HashSet<Node> touchedNodes) {
Node minNode = null;
int minDistance = Integer.MAX_VALUE;
for (Map.Entry<Node, Integer> entry : distanceMap.entrySet()) {
Node node = entry.getKey();
int distance = entry.getValue();
if (!touchedNodes.contains(node) && distance < minDistance) {
minNode = node;
minDistance = distance;
}
}
return minNode;
}
Dijkstra 自定义堆优化解法
public static class NodeRecord {
public Node node;
public int distance;
public NodeRecord(Node node, int distance) {
this.node = node;
this.distance = distance;
}
}
public static class NodeHeap {
private Node[] nodes; // 实际的堆结构
// key 某一个node, value 上面堆中的位置
private HashMap<Node, Integer> heapIndexMap;
// key 某一个节点, value 从源节点出发到该节点的目前最小距离
private HashMap<Node, Integer> distanceMap;
private int size; // 堆上有多少个点
public NodeHeap(int size) {
nodes = new Node[size];
heapIndexMap = new HashMap<>();
distanceMap = new HashMap<>();
size = 0;
}
public boolean isEmpty() {
return size == 0;
}
// 有一个点叫node,现在发现了一个从源节点出发到达node的距离为distance
// 判断要不要更新,如果需要的话,就更新
public void addOrUpdateOrIgnore(Node node, int distance) {
if (inHeap(node)) {
distanceMap.put(node, Math.min(distanceMap.get(node), distance));
insertHeapify(node, heapIndexMap.get(node));
}
if (!isEntered(node)) {
nodes[size] = node;
heapIndexMap.put(node, size);
distanceMap.put(node, distance);
insertHeapify(node, size++);
}
}
public NodeRecord pop() {
NodeRecord nodeRecord = new NodeRecord(nodes[0], distanceMap.get(nodes[0]));
swap(0, size - 1);
heapIndexMap.put(nodes[size - 1], -1);
distanceMap.remove(nodes[size - 1]);
nodes[size - 1] = null;
heapify(0, --size);
return nodeRecord;
}
private void insertHeapify(Node node, int index) {
while (distanceMap.get(nodes[index]) < distanceMap.get(nodes[(index - 1) / 2])) {
swap(index, (index - 1) / 2);
index = (index - 1) / 2;
}
}
private void heapify(int index, int size) {
int left = index * 2 + 1;
while (left < size) {
int smallest = left + 1 < size && distanceMap.get(nodes[left + 1]) < distanceMap.get(nodes[left])
? left + 1
: left;
smallest = distanceMap.get(nodes[smallest]) < distanceMap.get(nodes[index]) ? smallest : index;
if (smallest == index) {
break;
}
swap(smallest, index);
index = smallest;
left = index * 2 + 1;
}
}
private boolean isEntered(Node node) {
return heapIndexMap.containsKey(node);
}
private boolean inHeap(Node node) {
return isEntered(node) && heapIndexMap.get(node) != -1;
}
private void swap(int index1, int index2) {
heapIndexMap.put(nodes[index1], index2);
heapIndexMap.put(nodes[index2], index1);
Node tmp = nodes[index1];
nodes[index1] = nodes[index2];
nodes[index2] = tmp;
}
}
// 改进后的dijkstra算法
// 从head出发,所有head能到达的节点,生成到达每个节点的最小路径记录并返回
public static HashMap<Node, Integer> dijkstra2(Node head, int size) {
NodeHeap nodeHeap = new NodeHeap(size);
nodeHeap.addOrUpdateOrIgnore(head, 0);
HashMap<Node, Integer> result = new HashMap<>();
while (!nodeHeap.isEmpty()) {
NodeRecord record = nodeHeap.pop();
Node cur = record.node;
int distance = record.distance;
for (Edge edge : cur.edges) {
nodeHeap.addOrUpdateOrIgnore(edge.to, edge.weight + distance);
}
result.put(cur, distance);
}
return result;
}
本文使用 文章同步助手 同步