深度学习已死,可微分编程万岁

Deep Learning est mort. Vive Differentiable Programming!
---Yann LeCun

翻译成中文就是:深度学习已死,可微分编程万岁!
为什么这么说呢?


image.png

但重点的是,人们现在正通过组装参数化功能模块网络,构建一种新软件,并用某种基于梯度优化的方法来训练它们。

越来越多的人正在以一种依赖于数据的方式(循环和条件)来程序化定义网络,让它们随着输入数据的动态变化而变化。这与普通的程序非常类似,除了前者是参数化的、可以自动可微分,并且可训练和优化。动态网络变得越来越流行(尤其是对于NLP),这要归功于PyTorch和Chainer等深度学习框架(注意:早在1994年,之前的深度学习框架Lush,就能处理一种称为Graph Transformer Networks的特殊动态网络,用于文本识别)。

现在人们正在积极研究开发命令式可微分编程语言编译器,这对开发基于学习的AI(learning-based AI)来说是一条非常令人兴奋的途径。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

友情链接更多精彩内容