Deep Learning est mort. Vive Differentiable Programming!
---Yann LeCun
翻译成中文就是:深度学习已死,可微分编程万岁!
为什么这么说呢?

image.png
但重点的是,人们现在正通过组装参数化功能模块网络,构建一种新软件,并用某种基于梯度优化的方法来训练它们。
越来越多的人正在以一种依赖于数据的方式(循环和条件)来程序化定义网络,让它们随着输入数据的动态变化而变化。这与普通的程序非常类似,除了前者是参数化的、可以自动可微分,并且可训练和优化。动态网络变得越来越流行(尤其是对于NLP),这要归功于PyTorch和Chainer等深度学习框架(注意:早在1994年,之前的深度学习框架Lush,就能处理一种称为Graph Transformer Networks的特殊动态网络,用于文本识别)。
现在人们正在积极研究开发命令式可微分编程语言编译器,这对开发基于学习的AI(learning-based AI)来说是一条非常令人兴奋的途径。