Python学习笔记:19个pythonic编程习惯,让你的Python入门更优雅

Python最大的优点之一就是语法简洁,好的代码就像伪代码一样,干净、整洁、一目了然。

要写出 Pythonic(优雅的、地道的、整洁的)代码,需要多看多学大牛们写的代码,github 上有很多非常优秀的源代码值得阅读,比如:requests、flask、tornado,下面列举一些常见的Pythonic写法。都是课堂上Python学习笔记的精华!

在这里插入图片描述

0. 程序必须先让人读懂,然后才能让计算机执行。

“Programs must be written for people to read, and only incidentally for machines to execute.”

1. 交换赋值

##不推荐
temp = a
a = b
b = a 
##推荐
a, b = b, a # 先生成一个元组(tuple)对象,然后unpack

2. Unpacking

##不推荐
l = ['David', 'Pythonista', '+1-514-555-1234']
first_name = l[0]
last_name = l[1]
phone_number = l[2] 
##推荐
l = ['David', 'Pythonista', '+1-514-555-1234']
first_name, last_name, phone_number = l
# Python 3 Only
first, *middle, last = another_list

3. 使用操作符in

##不推荐
if fruit == "apple" or fruit == "orange" or fruit == "berry":
 # 多次判断 
##推荐
if fruit in ["apple", "orange", "berry"]:
 # 使用 in 更加简洁

4. 字符串操作

##不推荐
colors = ['red', 'blue', 'green', 'yellow']
result = ''
for s in colors:
 result += s # 每次赋值都丢弃以前的字符串对象, 生成一个新对象 
##推荐
colors = ['red', 'blue', 'green', 'yellow']
result = ''.join(colors) # 没有额外的内存分配

5. 字典键值列表

##不推荐
for key in my_dict.keys():
 # my_dict[key] ... 
##推荐
for key in my_dict:
 # my_dict[key] ...
# 只有当循环中需要更改key值的情况下,我们需要使用 my_dict.keys()
# 生成静态的键值列表。

6. 字典键值判断

##不推荐
if my_dict.has_key(key):
 # ...do something with d[key] 
##推荐
if key in my_dict:
 # ...do something with d[key]

7. 字典 get 和 setdefault 方法

##不推荐
navs = {}
for (portfolio, equity, position) in data:
 if portfolio not in navs:
 navs[portfolio] = 0
 navs[portfolio] += position * prices[equity]
##推荐
navs = {}
for (portfolio, equity, position) in data:
 # 使用 get 方法
 navs[portfolio] = navs.get(portfolio, 0) + position * prices[equity]
 # 或者使用 setdefault 方法
 navs.setdefault(portfolio, 0)
 navs[portfolio] += position * prices[equity]

8. 判断真伪

##不推荐
if x == True:
 # ....
if len(items) != 0:
 # ...
if items != []:
 # ... 
##推荐
if x:
 # ....
if items:
 # ...

9. 遍历列表以及索引

##不推荐
items = 'zero one two three'.split()
# method 1
i = 0
for item in items:
 print i, item
 i += 1
# method 2
for i in range(len(items)):
 print i, items[i]
##推荐
items = 'zero one two three'.split()
for i, item in enumerate(items):
 print i, item

10. 列表推导

##不推荐
new_list = []
for item in a_list:
 if condition(item):
 new_list.append(fn(item)) 
##推荐
new_list = [fn(item) for item in a_list if condition(item)]

11. 列表推导-嵌套

##不推荐
for sub_list in nested_list:
 if list_condition(sub_list):
 for item in sub_list:
 if item_condition(item):
 # do something... 
##推荐
gen = (item for sl in nested_list if list_condition(sl) \
 for item in sl if item_condition(item))
for item in gen:
 # do something...

12. 循环嵌套

##不推荐
for x in x_list:
 for y in y_list:
 for z in z_list:
 # do something for x & y 
##推荐
from itertools import product
for x, y, z in product(x_list, y_list, z_list):
 # do something for x, y, z

13. 尽量使用生成器代替列表

##不推荐
def my_range(n):
 i = 0
 result = []
 while i < n:
 result.append(fn(i))
 i += 1
 return result # 返回列表
##推荐
def my_range(n):
 i = 0
 result = []
 while i < n:
 yield fn(i) # 使用生成器代替列表
 i += 1
# 尽量用生成器代替列表,除非必须用到列表特有的函数。

14. 中间结果尽量使用imap/ifilter代替map/filter

##不推荐
reduce(rf, filter(ff, map(mf, a_list)))
##推荐
from itertools import ifilter, imap
reduce(rf, ifilter(ff, imap(mf, a_list)))
# lazy evaluation 会带来更高的内存使用效率,特别是当处理大数据操作的时候。

15. 使用any/all函数

##不推荐
found = False
for item in a_list:
 if condition(item):
 found = True
 break
if found:
 # do something if found... 
##推荐
if any(condition(item) for item in a_list):
 # do something if found...

16. 属性(property)

##不推荐
class Clock(object):
 def __init__(self):
 self.__hour = 1
 def setHour(self, hour):
 if 25 > hour > 0: self.__hour = hour
 else: raise BadHourException
 def getHour(self):
 return self.__hour
##推荐
class Clock(object):
 def __init__(self):
 self.__hour = 1
 def __setHour(self, hour):
 if 25 > hour > 0: self.__hour = hour
 else: raise BadHourException
 def __getHour(self):
 return self.__hour
 hour = property(__getHour, __setHour)

17. 使用 with 处理文件打开

##不推荐
f = open("some_file.txt")
try:
 data = f.read()
 # 其他文件操作..
finally:
 f.close()
##推荐
with open("some_file.txt") as f:
 data = f.read()
 
学习python中有什么不懂的地方,小编这里推荐加小编的python学习群:
895 797 751
有任何不懂的都可以在里面交流,还有很好的视频教程pdf学习资料,大家一起学习交流!
 # 其他文件操作...

18. 使用 with 忽视异常(仅限Python 3)

##不推荐
try:
 os.remove("somefile.txt")
except OSError:
 pass
##推荐
from contextlib import ignored # Python 3 only
with ignored(OSError):
 os.remove("somefile.txt")

19. 使用 with 处理加锁

##不推荐
import threading
lock = threading.Lock()
lock.acquire()
try:
 # 互斥操作...
finally:
 lock.release()
##推荐
import threading
lock = threading.Lock()
with lock:
 # 互斥操作...

更多的Python学习笔记也会为大家分类整理,大家也学了这么多期的Python教程,伙伴们有收获到哪些呢?

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容