大批量(5W+)数据批量插入数据库

处理记录
借鉴文章地址:https://www.imooc.com/article/321536

采用方案:for 循环循环插入
JDBC 中的 PreparedStatement 有预编译功能,预编译之后会缓存起来,后面的 SQL 执行会比较快并且 JDBC 可以开启批处理,这个批处理执行非常快。

具体步骤:
1.设置MySQL批量执行
MySQL JDBC 驱动在默认情况下会无视 executeBatch() 语句,把我们期望批量执行的一组 sql 语句拆散,一条一条地发给 MySQL 数据库,批量插入实际上是单条插入,直接造成较低的性能。将 rewriteBatchedStatements 参数置为 true, 数据库驱动才会帮我们批量执行 SQL。


image.png

2.开启批处理 ExecutorType.BATCH

    @Transactional(rollbackFor = Exception.class)
    public List<StudentBatchImportDto> studentBatchImport(List<StudentBatchImportDto> read, Map collects, Map map) {
        //如果自动提交设置为true,将无法控制提交的条数,改为最后统一提交。
        SqlSession session = sqlSessionTemplate.getSqlSessionFactory().openSession(ExecutorType.BATCH, false);
        MicroApplicationMapper sessionMapper = session.getMapper(MicroApplicationMapper.class);
        Date date = new Date();
        String pwd = passwordEncoder.encode(DEFAULT_PASSWORD);
        //用来装重复数据
        List<StudentBatchImportDto> list = new ArrayList<>();
        int dateSize = read.size();
        int i =1;
        for (StudentBatchImportDto studentBatchImportDto : read) {
            //如果身份证已存在则不导入
            String ifExit = (String)collects.get(studentBatchImportDto.getIdCard());
            if(!StringUtils.isEmpty(ifExit)){//判断当前身份证是否在数据库存在
                list.add(studentBatchImportDto);
            }else {
                //插入表t_user
                studentBatchImportDto.setPwd(pwd);
                studentBatchImportDto.setDate(date);
                sessionMapper.insertStudentSource(studentBatchImportDto);
                if(i % size ==0){ //防止内存溢出,分批提交
                    session.commit();         
                }
                i++;
            }
        }
        session.commit();
        return list;
    }

虽然是一条一条的插入,但是开启了批处理模式(BATCH),这样前前后后就只用这一个 SqlSession。节约了反反复复获取 Connection 以及释放 Connection 得大量时间。
最后插入15000大概2.6M得数据大概花了1-2秒左右得时间。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容