bandit-notes of combinatorial bandits 2011

I want to write my thoughts of the paper [Combinatorial Bandits] by Nicolo Cesa-Bianchi and Gabor Lugosi in 2011. The first author is a great professor in this area. His paper of [Finite-time analysis of the multi-armed bandit problem] in 2002 as second author has been cited over 1,500 times. The survey which I am reading about bandit problem, [Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems], is written by him as second author.

Before I read this paper, I thought linear bandits is just a small variant of normal bandit problem and combinatorial bandit problem is a higher-level generalization of bandit problem. But combinatorial bandit problem is indeed a special case of linear bandits. To see this, represent one super-arm by a 0-1 sequence of length K, using 1 to denote base arm belong to super-arm and 0 otherwise.

In linear bandit problem setting, the set of bandits should be a compact set of euclidean space R^d. At each time t, the adversarial gives a loss vector l_t from R^d and the loss revealed to the forecaster is the inner product of played arm, which is a vector of R^d, and loss vector l_t. For combinatorial bandit problem, super arm is a combination of some base arms and the loss of one super arm is the sum of all losses of base arms belonging to it. So if we use 0-1 sequence to denote one super arm and represent loss vector by all losses of base arms, then the loss of super arm, the sum of base arms belonging to it, is the inner product of 0-1 sequence and loss vectors. That's why combinatorial is one special case of linear bandits.

In this paper, it introduces an algorithm of ComBand and provides a lot of good applications using it.

In the step 4, it use probability p_t to construct a matrix P where probability is a combination of q, depending on the loss, and a random distribution \mu on S, set of all super arms. Probability q is used for exploitation and \mu is for exploration. So probability is responsible for trade-off between exploration and exploitation.

Then the author use it to solve multitask bandit problem, hypercube where S ={0,1}^d is all possible combinations of base arms, graph problems with "symmetric" S which includes perfect matchings/spanning trees/cut sets/hamiltonian cycles/stars, m-sized subsets where S is all combinations of m base arms and path planning where S denotes all possible paths.

I think this paper is great not only because it provides a great applications which has wide influence in reality, especially those in graph problems. He has a solid background in computer science which reflects in translating those problems in terms of combinatorial bandit language and also the detailed solving methods. 

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,012评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,628评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,653评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,485评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,574评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,590评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,596评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,340评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,794评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,102评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,276评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,940评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,583评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,201评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,441评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,173评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,136评论 2 352

推荐阅读更多精彩内容

  • 时间8:30-9:10 书名《心理学史》 书页203-222 感想: 美国行为主义的产生和发展依附于美国资本...
    不要多愁善感阅读 233评论 0 0
  • 从小到大我一直是个固守成规的人,说白了,老实人一个,老师让干嘛干嘛,说往东绝不敢往西的那种人。 小学的时候,压根...
    曲奇_52阅读 253评论 0 0
  • 最近一段日子属于人生的低谷,而我的基本判断是:这样的低谷估计还会继续持续一段时间,在这段岁月里自己的心智的确是被狠...
    雕兄_KYP阅读 452评论 2 0
  • 作者:雨落安稳 一生一代一双人,争教两处销魂。相思相望不相亲,天为谁春?浆向蓝桥易乞,药成碧海难奔。若...
    雨落安稳阅读 427评论 0 1
  • 阵阵惊雷迎骤雨,东风吹散南风。依栏独坐小楼中。海棠谢了,零落影无踪。 雀儿年年栖老树,年年复看颜红。怎知花与去时同...
    七夜迷离阅读 212评论 0 0