数据分析python技能之es数据提取

Elasticsearch在NoSQL和时间序列的数据存储中占的比重越来越大。

Elasticsearch 公司的产品栈非常全面,打通数据采集,传递,存储,展示,而且部署简单快速,半天时间就可以搭建一套完整的POC出来。

目前大数据当道,数据的结构变化越来越快,越来越多的公司把原始数据存储在ES中,数据经过二次处理后在存储的mysql等结构化的数据库中。

作为数据分析师,平时和ES打交道的时间越来越多,除了对ES的查询语法熟悉之外,还需要会使用python从ES中提取自己想要的数据。

这里记录的便是基于es的python客户端来从es中提取超过10000条记录的方法。

默认ES 查询返回的记录数为10000,当然这个数字可以通过修改ES的配置来变大或者变小。但是作为数据分析师,一般不会有ES修改配置的权限。


import json
from elasticsearch import Elasticsearch

hosts = []
es = Elasticsearch(hosts=hosts)

indices = ['indice0', 'indice1']

# Initialize the scroll
page = es.search(
    index=','.join(indices),
    doc_type='demo',
    scroll='2m',
    search_type='scan',
    size=1000,
    q='user_id:123 AND type:user'    # 填写 Kibana 搜索栏里的 Lucene 查询语法字符串
)
sid = page['_scroll_id']
scroll_size = page['hits']['total']
print 'total scroll_size: ', scroll_size

l = []
# Start scrolling
while scroll_size > 0:
    print "Scrolling..."
    page = es.scroll(scroll_id=sid, scroll='2m')
    # Update the scroll ID
    sid = page['_scroll_id']
    # Get the number of results that we returned in the last scroll
    scroll_size = len(page['hits']['hits'])
    print "scroll size: " + str(scroll_size)
    # Do something with the obtained page
    docs = page['hits']['hits']
    l += [x['_source'] for x in docs]

print 'total docs: ', len(l)

file_path = 'demo.json'
with open(file_path, 'wb') as f:
    json.dump(l, f, indent=2)

可以对比打印出来的doc数量与scroll size便可以检查是否全部记录都提取出来了。最后将数据存储到json文件中。

基于ES提供的python 客户端的方式可以提取的数量不要超过100万行,否则很容易超时失败。应该跟底层的http库有关系。

要从一个Index中提取超过千万行的数据,最佳实践是基于Java的客户端或者ES提供的Hadoop库,或者使用Python自己构造http请求,处理错误信息。


本系列文章均为实际工作中遇到的场景,以此记录下来,共同进步,更愉悦的工作。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,734评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,931评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,133评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,532评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,585评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,462评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,262评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,153评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,587评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,792评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,919评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,635评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,237评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,855评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,983评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,048评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,864评论 2 354

推荐阅读更多精彩内容