使用monocle 2进行拟时序分析

monocle做拟时序分析首先要构建CDS需要3个矩阵:expr.matrix、pd、fd,其次将Seurat中的对象转换为monocle识别的对象。然后选择想要做拟时序依据的基因就可以了,如果已知开始和结束的细胞,将过程开始时收集的细胞与结束时收集的细胞简单地进行比较,并找到差异表达的基因,做拟时序依据的基因,根据时间点的差异分析选择基因通常非常有效,但是如果我们没有时间序列数据,可以选择离散度和表达量高的基因。

library(monocle)
packageVersion("monocle")
#monocle构建CDS需要3个矩阵:expr.matrix、pd、fd
# 将Seurat中的对象转换为monocle识别的对象
#cds <- importCDS(GetAssayData(seurat.object))
#选择做拟时序的亚群
Mono_tj<-subset(seurat.object, idents = c(1,2,4,6,7))

Mono_matrix<-as(as.matrix(GetAssayData(Mono_tj,slot = "counts")), 'sparseMatrix')
#构建featuredata,一般featuredata需要两个col,一个是gene_id,一个是gene_short_name,row对应counts的rownames
feature_ann<-data.frame(gene_id=rownames(Mono_matrix),gene_short_name=rownames(Mono_matrix))
rownames(feature_ann)<-rownames(Mono_matrix)
#
Mono_fd<-new("AnnotatedDataFrame", data = feature_ann)
#
#Seurat object中的@meta.data一般会存放表型相关的信息如cluster、sample的来源、group等,所以选择将metadata转换为phenodata
sample_ann<-Mono_tj@meta.data
#rownames(sample_ann)<-colnames(Mono_matrix)

Mono_pd<-new("AnnotatedDataFrame", data =sample_ann)
#build new cell data set
Mono.cds<-newCellDataSet(Mono_matrix,phenoData =Mono_pd,featureData =Mono_fd,expressionFamily=negbinomial.size())

#查看phenodata、featuredata
head(pData(Mono.cds))
head(fData(Mono.cds))
#预处理
Mono.cds <- estimateSizeFactors(Mono.cds)
Mono.cds <- estimateDispersions(Mono.cds)
#筛选基因,这里可以根据自己的需要筛选特定的基因
disp_table <- dispersionTable(Mono.cds)
unsup_clustering_genes <- subset(disp_table, mean_expression >= 0.1)
Mono.cds <- setOrderingFilter(Mono.cds, unsup_clustering_genes$gene_id)
#用DDRtree 进行降维分析
Mono.cds <- reduceDimension(
  Mono.cds,
  max_components = 2,
  method = 'DDRTree')
#计算psudotime值
Mono.cds <- orderCells(Mono.cds)
head(pData(Mono.cds))

plot_cell_trajectory(Mono.cds,cell_size = 1)

image
plot_cell_trajectory(Mono.cds, color_by = "Pseudotime")

image
plot_cell_trajectory(Mono.cds, color_by = "seurat_clusters",cell_size = 1)

image

欢迎关注~

参考:http://cole-trapnell-lab.github.io/monocle-release/docs/
https://cole-trapnell-lab.github.io/monocle-release/Paul_dataset_analysis_final.html

作者:生信编程日常
链接:https://www.jianshu.com/p/9cb936749242

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容