一天14个
1、教育统计学的内容主要包括:描述统计与推断统
2、测量结果能在其上取定数值的量尺,从量化水平高低的角度可分为:名义量尺、顺序量尺、等距量尺与比率量尺。在名义量尺上所指定的数字,只具有类别标志的意义,而无性质优劣,分量多寡的意义。顺序量尺上的数字量化水平则较高,有优劣、大小、先后之别,如学业成绩评定优劣。等距量尺上的数字量化水平又更高,这种数字是单位相等但零点可任意指定的线性连续体系上的值,如温度、可比可加。比率量尺是一种有绝对零点的,等单位的线性连续体系。如身高、体重等。能加、减、乘、除
3、测量工作按一定的规则进行,体现为三种东西即:测量工具、施测和评分的程序与要求、结果解释参照系或参照物
4、心理测量跟物理测量的两点突出差异:一间接性;二要抽样进行
5、数据的种类①从数据来源分成计数数据、测量评估数据和人工编码数据②根据数据所反映的变量的性质分分为称名变量数据、顺序变量数据、等距变量和比率变量数据
6、顺序变量数据之间虽有次序与等级关系,但不具有相等单位,也不具有绝对的数量大小和零点。因此只能进行顺序递推运算,不能做加减乘除运算。等距变量不能用乘、除法运算来反映两个数据之间的倍比关系,能做加减运算。比率变量数据可以进行加、减、乘、除运算
7、数据三个特点①数据的离散性②数据的变异性③数据的规律性
8、统计一批数据的次数分布两种方法:一、按不同的测量值逐点统计次数;二、为了简缩数据以区间跨度来统计次数。如分数段统计
9、编制简单次数分布步骤①求全距②定组数③定组距④写组限⑤求组中值⑥归类划记⑦登记次数
10、相对次数分布表主要能反映各组数据的百分比结构
11、累积次数分布表还分成“以下”累积次数分布表与“以上”累积次数分布表两种。“以下”累积其目的在于反映位于某个分数“以下”的累积次数共有多少
12、次数分布图两种表达方式:次数直方图和次数多边图
13、次数分布曲线按形状有各种不同类型①单峰对称分布曲线。正态分布曲线也是这一类型曲线中的一种②非对称曲线即偏态分布。正偏态:次数分布有朝数量大的一边偏尾,曲线高峰偏向数量小的方向,在一些考试中,若题目偏难,多数考分偏低时,可形成正偏态分布。而负偏态的次数分布偏向正好与正偏态相反
14、几种常用统计分析图:散点图、线形图、条形图和圆形图
15、圆形图有其独特的功能,特别适用于描述具有百分比结构的分类数据
16、集中量数有三个作用①向人们提供整个分布中多数数据的集结点位置②集中反映一批数据在整体上的数量大小③一批数据的典型代表值
17、集中量数有多个种类,最常用的是算术平均数、中位数和众数三种。其中算术平均数是使用最普通的一个集中量数。中数在下列情况中有较好的应用价值①数据分布中有个别异常值或极端值出现时,用平均数作分布的代表值倒不如用中数作分布的代表值来得客观合理②在次数分布的某端或两端的数据只有次数而没有确切数量时③在一些态度测验、价值观测验或一般的民意问卷测试中,通常向被调查对象提出一些事项,要求被调查对象对这些事项排序。那么,在这种资料的信息数据整理分析中可应用中数来概括各个事项的总体排序结果
18、常用的差异量数是平均差、标准差和方差等指标
19、差异系数又称为变异系数和变差系数,用符号CV表示。差异系数是一种反映相对离散程度的系数,即相对差异量数。它消去了单位,因而适合于不同性质数据的研究与比较。数据在次数分布中所处的地位可用百分等级来表示。百分等级也称百分位。用记号PR表示。百分等级反映的是某个观测分数以下数据个数占总个数的比例的百分数,在0到100之间取值。如百分等级PR=75,与其对应的这个百分位数,读作第75百分位数,记作P75
20、相关:统计学上用相关系数来定量描述两个变量之间的直线性相关的强度与方向。如相互关联着的两变量,一个增大另一个也随之增大,一个减小另一个也随之减小,变化方向一致是正相关。如相互关联着的两变量,一个增大另一个反而减小,变化方向相反是负相关。相关系数用r表示, r在-1和+1之间取值。相关系数r的绝对值大小,表示两个变量之间的相关强度;相关系数r的正负号,表示相关的方向,分别为正相关和负相关;相关系数 r=0,称零线性相关,简称零相关;相关系数|r|=1时,表示两个变量是完全相关。当0.7≤|r|<1,称为高相关;当0.4≤|r|<0.7时,称为中等相关;当0.2≤|r|<0.4时,称为低相关;当|r|<0。2时,称极低相关或接近零相关
21、积差相关是应用最普遍、最基本的一种相关分析方法,尤其适合于对两个连续变量之间的相关情况进行定量分析
22、等级相关适用的几种情况①两列观测数据都是顺序变量数据,或一列是顺序变量数据,另一列是连续变量的数据。如对学生的绘画、体育测试成绩排名就属顺序变量数据②两个连续变量的观测数据,其中有一列或两列数据的获得主要依靠非测量方法进行粗略评估得到。如语文基础知识水平可测验加以测量但学生的课文朗读水平却只能根据若干准则由老师给予大体的评估。点双列相关适用于双变量数据中,有一列数据是连续变量数据,如体重、身高以及许多测验与考试的分数;另一列数据是二分类的称名变量数据,如性别
23、原始分数的意义必须要跟一定的参照物(系统)作比较,才能真正明确起来。原始分数意义的参照物大体有两类,一是其他被试的测值,即其他被试在所测特性上的普遍水平或水平分布状态;二是社会在所测特性上的客观要求,即被试在所测特性上发展应该达到程度的标准
24、常模总是指某一具体测验(不能简单地看成是其名称所指特性)上的常模。常模总是特定的、具体的,是就一定人群在具体测验上的表现来说的。常模又可分为发展常模与组内常模两大类。发展常模又有年龄常模与年级常模之别,组内常模又有百分等级常模与标准分数常模之别
25、历史上第一个提出常模这一科学概念的是法国心理学家比纳。他最早建立了智力测验的年龄常模。发展常模就是某类个体正常发展进程各特定阶段的一般水平
26、智商(IQ)=智力年龄/生理年龄×100
27、组内常模又可分为百分等级常模与标准分数常模两个类别。一个分数的百分等级,就是该分数在所属分数组中,取值比它小的分数个数占该分数组总个数的百分数。百分等级值只有可比性而无可加性,不能累加求和与进一步求平均;这是百分等级常模的一个局限所在
28、一个测验分数的标准分数,就是以它所属分数组的标准差为单位的,对它所属分数组的平均数的距离
29、难度指数(p)取值越大并不意味着项目越难,而是越易;指数p的数字值与其代表的含义,方向恰好相反
30、三种偏态分布:如果一个测验对某一被试团体来说,难度相对显得大,那么,被试团体中大多数人就会得低分,被试总分分布就会形成正偏态分布;如果一个测验对某一被试团体来说,难度相对显得小,被试团体中就会有很多人得高分,总分分布就会形成负偏态;假定被试团体在某一特定方面,其水平分布事实上是呈正态分布的,若测验项目的难度确能做到对这个被试团体来说是恰当的,那么对这个团体施测这一测验,所得被试测验总分分布自然也会呈正态分布
31、“高、低分组求得分率差”的办法就是将全体被试按总分多寡加以排队,然后取得分最多的27%的被试作为“高分组”,得分最少的27%的被试作为“低分组”,最后求这两个组上项目得分率(通过率)的差来作为区分度指数的取值
31、人们就使用两个平行形式测验来测查同一批被试,这样也可获得同一批被试的两批独立测值,从而通过求相关系数,估出测验的信度32、效度验证工作大体分为三类即内容效度、效标关联效度和结构效度。效标关联效度又包含“并存”效度和“预测”效度这两个小类别
33、测验即使相当有效,效度系数rXY的取值也很少能超过0.70,一般取值能达到0.40就相当不错了
34、根据课堂教学运用测验的一般顺序来分可把学业成就测验分成安置性测验、形成性测验、诊断性测验和终结性测验。根据解释测验分数的方法不同可把学业成就测验分成常模参照测验和标准参照测验两类。根据成就测验的实施方式与测验载体,我们把成就测验分成口头测验、纸笔测验和操作测验
35、纸笔测验优点①提高测验的效率,即同时可以进行大团体的测验②便于完整记录学生在题目作答上的反应③便于施测和评分过程的规范化和标准化从而提高学业成就测验的信度与效度④便于对测验中答题信息的分析研究
36、课堂成就测验特点①简易性②灵活性③随意性④测量性能较差
37、对教育目标分类的认识:布卢姆认为作为完整的教育目标应当包括三个主要的领域:认知领域、情感领域和动作技能领域。布卢姆把认知领域中的行为目标分为六个不同的层次,它们依次是知识(识记)、领会、应用、分析、综合和评价①知识:回忆或辨认某些特定的事实②领会:初步理解材料的意义③应用:能够运用已学过的材料④分析:把事物整体分解为部分,以便了解整体与部分以及部分与部分之间的关系⑤综合:把各个部分有机地组织成一个整体的能力⑥评价:根据一定的标准对事物的价值作出合乎逻辑的判断,如对小说、诗歌、电影、哲学流派、环保方案、测验设计等作出价值判断的行为与能力
38、我国教育工作者提出目标层次分为识记、理解(领会)、简单应用和综合应用这四个层次
39、学业测验中考试题目类型分为客观题、主观题
40、客观题:有一些考试题目,如果评分规则一旦明确下来,只要依照这些规则,无论谁去评分,都会得出相同的分数,典型的客观题类型常见的有填空题、简答题、是非题、匹配题、单项选择题或多项选择题等。简答题和填空题适合于测量相对简单的学习成就。是非题这种题型的缺陷也是明显的,一是容易猜测,(猜对的可能性有50%),二是适合于用是非题来测量的学习成就其范围有限。多项选择题更适合于测量具有较复杂结构的学习成就
41、主观题型如论述题、证明题、计算题、作图题、作文题等
42、心理测验主要用途①人才选拔②人员安置与人事管理③临床心理学研究④学校心理服务⑤建立和检验假设43、智力测验在国内常见①比纳智力测验②斯坦福—比纳智力测验③韦克斯勒智力测验④瑞文标准推理测验和⑤中小学生团体智力筛选测验
44、吉尔福特认为,发散思维所表现出来的一个人的外在的行为,即代表这个人的创造力
45、发散性思维在行为上表现三种基本特征:流畅性、变通性、独特性
46、人格测验的方法与类型主要有自陈量表法、投射测验法、情境测验法、评定量表法
47、客观世界中发生的各种现象分为两类:确定性现象不确定性现象
48、按照概率的定义,概率的取值范围在区间[0,1]上,如某个事件概率为1,表示该事件肯定发生,这样的事件称为必然事件,在实际研究中更多事件的概率介于0与1之间,人们把发生概率很小的事件,如概率小于0.05,或0.01,称为小概率事件
49、一个离散性随机变量的概率分布是指这个随机变量所有取值点的概率的分布情况。一个连续性随机变量的概率分布是指这个随机变量所有取值区间上概率取值的分布情况
50、从形态看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为过x=u的纵线。曲线在X=u点取得最大值。从x=u点开始,曲线向正负两个方向递减延伸,不断向X轴逼近,但永不与X轴相交。一个随机变量服从正态分布的最大特点是其取值在平均数附近的概率很大,而取值离平均数越远,其概率越小。在这许许多多的正态分布中有平均数为0、标准差为1的正态分布可以作为正态分布的一个典型代表,其他各种正态分布都可以通过一定的数学方法与它相互转化
51、在标准正态分布中,夹中间面积90%的两个Z值分别为±1.96;夹中间面积99%的两个Z值分别为±2.58
52、统计学中,推断统计的直接操作对象是总体的一个样本,但其推断的却是总体的各种特征。影响样本对总体代表性的因素主要有三①总体本身的离散性②所抽取样本容量的大小③对总体代表性强弱的因素是抽样方法
53、随机抽样方法①简单随机抽样②分层抽样③分阶段抽样④等距抽样
54、随机抽样方法原则①机会均等②相互独立。简单随机抽样最常见的形式就是抽签。较严谨的简单随机抽样是借助随机数码表而作的随机抽样
55、分层抽样的实质就是将总体各部分按其容量在总体规模中的比分派到样本结构中去,然后进行抽样。所以分层抽样是分两步进行①按比例求出各部分入样元素数②各部分按要求的人样数用简单随机抽样的方法产生入样元素,最终合成总样本。分阶段抽样实际上进行两次抽样,第一次是以“部分”为元素进行抽样,然后再在人样的这些“部分”中抽取入样元素。等距抽样的第一步也是首先对总体所有元素编号,所编号码应该是连续有序的。第二步计算每相邻两入样元素的间隔距离。第三步是在第一间隔中随机确定第一个入样元素的号码,比如说取定为00003。第四步则开始抽取入样元素
56、要认识抽样分布必须学会识别三种分布:总体分布、子样分布和抽样分布
57、α值常取0.05和0.01两个水平,偶而也有取0.001的。在假设检验中,α的取值越小,称此假设检验的显著性水平越高
58、统计假设检验中使用的假设有两种,一种称为虚无假设,一种称为备择假设。统计假设检验中冒犯I型错误的概率大小就等于显著性水平α值的大小,β同时也是犯 Ⅱ型错误的概率值符号。Ⅱ型错误称为β错误,影响Ⅱ型错误概率大小的因素有三个。第一因素是客观的真值与假设的伪值两者之间的差异。第二因素是α值的大小。α值越大,犯Ⅱ型错误的概率就越小,α值越小,β就越大。第三因素是样本容量。样本容量越大,犯Ⅱ型错误的概率就越小;样本容量越小,犯Ⅱ型错误的概率就越大
59、如果检验的目的是为了判断某个总体参数是否等于某个定值,或者是为了推断某两个总体参数是否相等,则应该使用双侧检验。如果检验的目的是为了推断某个总体参数是否大于或是否小于某个定值,或者是为了推断某两个总体参数之间有无大于或小于的关系
60、X1平均数-X2平均数的抽样分布形态以及它的各种参数估计公式主要受到四个因素的影响。第一是受到两个总体是否相关的影响,第二是受到两个总体分布是否正态的影响,第三是受到两个总体方差是否已知以及是否相等的影响,第四是受到所抽样本容量的影响
61、把人按四种气质类型统计人数;学习成绩按优、良、中、差分类统计;对某项改革措施按所持赞成、反对以及无所谓态度统计;把一个教师群体同时按职称类别和态度等交叉分类。对于这一类数据的差异显著性检验,最适合的检验方法是x2检验62、计算x2时①若实际观测次数f0和理论期待次数fe完全相同,则x2为0,表明观测的次数分布与设想的总体的理论次数分布没有差异②当实际观测次数f0和理论期待次数fe相差越大时,则x2值也越大,这表明观测的次数分布与设想的总体的理论次数分布之间的差异也越大
63、χ2(读作卡方)是检验实际观测次数与理论期待次数之间差异程度的指标,其最一般表达式 为 f0表示实际观测次数;fe表示理论期待次数。χ2检验最重要的最关键的一步是如何从虚无假设出发,确定各类事物的理论期待次数
64、总体分布的拟合良度检验包括非连续变量观测次数分布的拟合良度检验、连续变量观测数据次数分布的拟合良度检验
65、在计算理论次数时,根据χ2统计量的特性,对此要求把理论次数小于5的组同相邻的组进行合并,直至所有组的理论次数均不小于5方可
66、列联系数C与χ2值,在对r×K 列联表检验中(这里 r与K 中至少有一个大于2),当所得的χ2值大于由预定显著性水平及特定自由度决定的χ2临界值时,我们有理由拒绝虚无假设并推断说,两种特征或属性之间具有相互依存的连带关系;但这种相关关系的程度怎样呢?在统计学中,人们用列联系数C来表示这种相关的程度。关系式为: C= 列联系数在0与1之间取值
67、在实际工作中我们有时需要同时对多于两个的总体平均数有无显著性差异作出检验,三个或三个以上用方差分析
68、方差齐性检验方法:多总体方差是否齐性常采用Hartley最大F值法
69、方差分析作出各总体平均数有显著差异之后,还必须作进一步的分析,目的以探清到底有多少对平均数之间有显著差异,到底哪些平均数之间有显著差异。方差进一步分析方法有N-K法。