13_在项目中部署redis企业级数据备份方案以及各种踩坑的数据恢复容灾演练

到这里为止,其实还是停留在简单学习知识的程度,学会了redis的持久化的原理和操作,但是在企业中,持久化到底是怎么去用得呢?

企业级的数据备份和各种灾难下的数据恢复,是怎么做得呢?

1、企业级的持久化的配置策略

在企业中,RDB的生成策略,用默认的也差不多

save 60 10000:如果你希望尽可能确保说,RDB最多丢1分钟的数据,那么尽量就是每隔1分钟都生成一个快照,低峰期,数据量很少,也没必要

10000->生成RDB,1000->RDB,这个根据你自己的应用和业务的数据量,你自己去决定

AOF一定要打开,fsync,everysec

auto-aof-rewrite-percentage 100: 就是当前AOF大小膨胀到超过上次100%,上次的两倍
auto-aof-rewrite-min-size 64mb: 根据你的数据量来定,16mb,32mb

2、企业级的数据备份方案

RDB非常适合做冷备,每次生成之后,就不会再有修改了

数据备份方案

(1)写crontab定时调度脚本去做数据备份
(2)每小时都copy一份rdb的备份,到一个目录中去,仅仅保留最近48小时的备份
(3)每天都保留一份当日的rdb的备份,到一个目录中去,仅仅保留最近1个月的备份
(4)每次copy备份的时候,都把太旧的备份给删了
(5)每天晚上将当前服务器上所有的数据备份,发送一份到远程的云服务上去

/usr/local/redis

每小时copy一次备份,删除48小时前的数据

crontab -e

0 * * * * sh /usr/local/redis/copy/redis_rdb_copy_hourly.sh

redis_rdb_copy_hourly.sh

!/bin/sh

cur_date=date +%Y%m%d%k
rm -rf /usr/local/redis/snapshotting/cur_date mkdir /usr/local/redis/snapshotting/cur_date
cp /var/redis/6379/dump.rdb /usr/local/redis/snapshotting/$cur_date

del_date=date -d -48hour +%Y%m%d%k
rm -rf /usr/local/redis/snapshotting/$del_date

每天copy一次备份

crontab -e

0 0 * * * sh /usr/local/redis/copy/redis_rdb_copy_daily.sh

redis_rdb_copy_daily.sh

!/bin/sh

cur_date=date +%Y%m%d
rm -rf /usr/local/redis/snapshotting/cur_date mkdir /usr/local/redis/snapshotting/cur_date
cp /var/redis/6379/dump.rdb /usr/local/redis/snapshotting/$cur_date

del_date=date -d -1month +%Y%m%d
rm -rf /usr/local/redis/snapshotting/$del_date

每天一次将所有数据上传一次到远程的云服务器上去

3、数据恢复方案

(1)如果是redis进程挂掉,那么重启redis进程即可,直接基于AOF日志文件恢复数据

不演示了,在AOF数据恢复那一块,演示了,fsync everysec,最多就丢一秒的数

(2)如果是redis进程所在机器挂掉,那么重启机器后,尝试重启redis进程,尝试直接基于AOF日志文件进行数据恢复

AOF没有破损,也是可以直接基于AOF恢复的

AOF append-only,顺序写入,如果AOF文件破损,那么用redis-check-aof fix

(3)如果redis当前最新的AOF和RDB文件出现了丢失/损坏,那么可以尝试基于该机器上当前的某个最新的RDB数据副本进行数据恢复

当前最新的AOF和RDB文件都出现了丢失/损坏到无法恢复,一般不是机器的故障,人为

大数据系统,hadoop,有人不小心就把hadoop中存储的大量的数据文件对应的目录,rm -rf一下,我朋友的一个小公司,运维不太靠谱,权限也弄的不太好

/var/redis/6379下的文件给删除了

找到RDB最新的一份备份,小时级的备份可以了,小时级的肯定是最新的,copy到redis里面去,就可以恢复到某一个小时的数据

容灾演练

我跟大家解释一下,我其实上课,为什么大量的讲师可能讲课就是纯PPT,或者是各种复制粘贴,都不是现场讲解和写代码演示的

很容易出错,为了避免出错,一般就会那样玩儿

吐槽,念PPT,效果很差

真实的,备课,讲课不可避免,会出现一些问题,但是我觉得还好,真实

appendonly.aof + dump.rdb,优先用appendonly.aof去恢复数据,但是我们发现redis自动生成的appendonly.aof是没有数据的

然后我们自己的dump.rdb是有数据的,但是明显没用我们的数据

redis启动的时候,自动重新基于内存的数据,生成了一份最新的rdb快照,直接用空的数据,覆盖掉了我们有数据的,拷贝过去的那份dump.rdb

你停止redis之后,其实应该先删除appendonly.aof,然后将我们的dump.rdb拷贝过去,然后再重启redis

很简单,就是虽然你删除了appendonly.aof,但是因为打开了aof持久化,redis就一定会优先基于aof去恢复,即使文件不在,那就创建一个新的空的aof文件

停止redis,暂时在配置中关闭aof,然后拷贝一份rdb过来,再重启redis,数据能不能恢复过来,可以恢复过来

脑子一热,再关掉redis,手动修改配置文件,打开aof,再重启redis,数据又没了,空的aof文件,所有数据又没了

在数据安全丢失的情况下,基于rdb冷备,如何完美的恢复数据,同时还保持aof和rdb的双开

停止redis,关闭aof,拷贝rdb备份,重启redis,确认数据恢复,直接在命令行热修改redis配置,打开aof,这个redis就会将内存中的数据对应的日志,写入aof文件中

此时aof和rdb两份数据文件的数据就同步了

redis config set热修改配置参数,可能配置文件中的实际的参数没有被持久化的修改,再次停止redis,手动修改配置文件,打开aof的命令,再次重启redis

(4)如果当前机器上的所有RDB文件全部损坏,那么从远程的云服务上拉取最新的RDB快照回来恢复数据

(5)如果是发现有重大的数据错误,比如某个小时上线的程序一下子将数据全部污染了,数据全错了,那么可以选择某个更早的时间点,对数据进行恢复

举个例子,12点上线了代码,发现代码有bug,导致代码生成的所有的缓存数据,写入redis,全部错了

找到一份11点的rdb的冷备,然后按照上面的步骤,去恢复到11点的数据,不就可以了吗

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容