笔试准备

大小端

题1

0x20150810

如果按照大端模式存储:从低地址到高地址:20 15 08 10
输出从低地址到高地址:20 15 08 10

如果按照小端模式存储:从低地址到高地址:10 08 15 20 (32位系统)
输出从高地址到低地址:08 10 20 15

直接打印出指针占多少字节,4字节为32位系统,8字节为64位系统。

tcp&udp

TCP UDP
TCP与UDP基本区别
1.基于连接与无连接
2.TCP要求系统资源较多,UDP较少;
3.UDP程序结构较简单
4.流模式(TCP)与数据报模式(UDP);
5.TCP保证数据正确性,UDP可能丢包
6.TCP保证数据顺序,UDP不保证
  
UDP应用场景:
1.面向数据报方式
2.网络数据大多为短消息
3.拥有大量Client
4.对数据安全性无特殊要求
5.网络负担非常重,但对响应速度要求高

具体编程时的区别
1.socket()的参数不同
   2.UDP Server不需要调用listen和accept
   3.UDP收发数据用sendto/recvfrom函数
   4.TCP:地址信息在connect/accept时确定
   5.UDP:在sendto/recvfrom函数中每次均 需指定地址信息
   6.UDP:shutdown函数无效

编程区别
通常我们在说到网络编程时默认是指TCP编程,即用前面提到的socket函数创建一个socket用于TCP通讯,函数参数我们通常填为SOCK_STREAM。即socket(PF_INET, SOCK_STREAM, 0),这表示建立一个socket用于流式网络通讯。
  SOCK_STREAM这种的特点是面向连接的,即每次收发数据之前必须通过connect建立连接,也是双向的,即任何一方都可以收发数据,协议本身提供了一些保障机制保证它是可靠的、有序的,即每个包按照发送的顺序到达接收方。

而SOCK_DGRAM这种是User Datagram Protocol协议的网络通讯,它是无连接的,不可靠的,因为通讯双方发送数据后不知道对方是否已经收到数据,是否正常收到数据。任何一方建立一个socket以后就可以用sendto发送数据,也可以用recvfrom接收数据。根本不关心对方是否存在,是否发送了数据。它的特点是通讯速度比较快。大家都知道TCP是要经过三次握手的,而UDP没有。

基于上述不同,UDP和TCP编程步骤也有些不同,如下:

TCP:
TCP编程的服务器端一般步骤是:
  1、创建一个socket,用函数socket();
  2、设置socket属性,用函数setsockopt(); * 可选
  3、绑定IP地址、端口等信息到socket上,用函数bind();
  4、开启监听,用函数listen();
  5、接收客户端上来的连接,用函数accept();
  6、收发数据,用函数send()和recv(),或者read()和write();
  7、关闭网络连接;
  8、关闭监听;

TCP编程的客户端一般步骤是:
  1、创建一个socket,用函数socket();
  2、设置socket属性,用函数setsockopt();* 可选
  3、绑定IP地址、端口等信息到socket上,用函数bind();* 可选
  4、设置要连接的对方的IP地址和端口等属性;
  5、连接服务器,用函数connect();
  6、收发数据,用函数send()和recv(),或者read()和write();
  7、关闭网络连接;

UDP:
与之对应的UDP编程步骤要简单许多,分别如下:
  UDP编程的服务器端一般步骤是:
  1、创建一个socket,用函数socket();
  2、设置socket属性,用函数setsockopt();* 可选
  3、绑定IP地址、端口等信息到socket上,用函数bind();
  4、循环接收数据,用函数recvfrom();
  5、关闭网络连接;

UDP编程的客户端一般步骤是:
  1、创建一个socket,用函数socket();
  2、设置socket属性,用函数setsockopt();* 可选
  3、绑定IP地址、端口等信息到socket上,用函数bind();* 可选
  4、设置对方的IP地址和端口等属性;
  5、发送数据,用函数sendto();
  6、关闭网络连接;

TCP和UDP是OSI模型中的运输层中的协议。TCP提供可靠的通信传输,而UDP则常被用于让广播和细节控制交给应用的通信传输。

UDP补充:
UDP不提供复杂的控制机制,利用IP提供面向无连接的通信服务。并且它是将应用程序发来的数据在收到的那一刻,立刻按照原样发送到网络上的一种机制。即使是出现网络拥堵的情况下,UDP也无法进行流量控制等避免网络拥塞的行为。此外,传输途中如果出现了丢包,UDO也不负责重发。甚至当出现包的到达顺序乱掉时也没有纠正的功能。如果需要这些细节控制,那么不得不交给由采用UDO的应用程序去处理。换句话说,UDP将部分控制转移到应用程序去处理,自己却只提供作为传输层协议的最基本功能。UDP有点类似于用户说什么听什么的机制,但是需要用户充分考虑好上层协议类型并制作相应的应用程序。

TCP补充:
TCP充分实现了数据传输时各种控制功能,可以进行丢包的重发控制,还可以对次序乱掉的分包进行顺序控制。而这些在UDP中都没有。此外,TCP作为一种面向有连接的协议,只有在确认通信对端存在时才会发送数据,从而可以控制通信流量的浪费。TCP通过检验和、序列号、确认应答、重发控制、连接管理以及窗口控制等机制实现可靠性传输。

TCP与UDP区别总结:
1、TCP面向连接(如打电话要先拨号建立连接);UDP是无连接的,即发送数据之前不需要建立连接
2、TCP提供可靠的服务。也就是说,通过TCP连接传送的数据,无差错,不丢失,不重复,且按序到达;UDP尽最大努力交付,即不保 证可靠交付
3、TCP面向字节流,实际上是TCP把数据看成一连串无结构的字节流;UDP是面向报文的
UDP没有拥塞控制,因此网络出现拥塞不会使源主机的发送速率降低(对实时应用很有用,如IP电话,实时视频会议等)
4、每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信
5、TCP首部开销20字节;UDP的首部开销小,只有8个字节
6、TCP的逻辑通信信道是全双工的可靠信道,UDP则是不可靠信道

协议

RARP:根据MAC地址查找对应的IP地址。
NAT把公网的IP地址转换为私网的IP地址。
ICMP用于控制数据报传送中的差错情况。
DHCP用于集中管理网络中的IP地址分配。

64位系统:
Size of char is: 1
Size of unsigned char is: 1
Size of signed char is: 1
size of int is: 4
Size of short is: 2
Size of long is: 8
Size of long int is: 8
Size of signed int is: 4
Size of unsigned int is: 4
Size of unsigned long int is: 8

Size of long long int is: 8
Size of unsigned long long is: 8
Size of float is: 4
Size of double is: 8
Size of long double is: 16
Size of (void *) is: 8
Size of (char *) is: 8
Size of (int *) is: 8
Size of (long *) is: 8
Size of (long long *) is: 8
Size of (float *) is: 8
Size of (double *) is: 8
所有指针都是占8字节

--- 32位系统
Size of char is: 1
Size of unsigned char is: 1
Size of signed char is: 1

Size of int is: 4
Size of short is: 2
Size of long is: 4
Size of long int is: 4
Size of signed int is: 4
Size of unsigned int is: 4
Size of unsigned long int is: 4
Size of long long int is: 8
Size of unsigned long long is: 8
Size of float is: 4
Size of double is: 8
Size of long double is: 8
Size of (void *) is: 4
Size of (char *) is: 4
Size of (int *) is: 4
Size of (long *) is: 4
Size of (long long *) is: 4
Size of (float *) is: 4
Size of (double *) is: 4
所有指针都是占4字节

内存对齐

**1.什么是内存对齐

假设我们同时声明两个变量:

char a;

short b;

用&(取地址符号)观察变量a,

b的地址的话,我们会发现(以16位CPU为例):** 如果a的地址是0x0000,那么b的地址将会是0x0002或者是0x0004。 **那么就出现这样一个问题:0x0001这个地址没有被使用,那它干什么去了?答案就是它确实没被使用。因为CPU每次都是从以2字节(16位CPU)或是4字节(32位CPU)的整数倍的内存地址中读进数据的。如果变量b的地址是0x0001的话,那么CPU就需要先从0x0000中读取一个short,取它的高8位放入b的低8位,然后再从0x0002中读取下一个short,取它的低8位放入b的高8位中,这样的话,为了获得b的值,CPU需要进行了两次读操作。

但是如果b的地址为0x0002,

那么CPU只需一次读操作就可以获得b的值了。所以编译器为了优化代码,往往会根据变量的大小,将其指定到合适的位置,即称为内存对齐(对变量b做内存对齐,a、b之间的内存被浪费,a并未多占内存)。

2.结构体内存对齐规则(请记住三条内存规则(在没有#pragam pack宏的情况下

结构体所占用的内存与其成员在结构体中的声明顺序有关,其成员的内存对齐规则如下:

(1)每个成员分别按自己的对齐字节数和PPB(指定的对齐字节数,32位机默认为4)两个字节数最小的那个对齐,这样可以最小化长度。如在32bit的机器上,int的大小为4,因此int存储的位置都是4的整数倍的位置开始存储。

(2)复杂类型(如结构)的默认对齐方式是它最长的成员的对齐方式,这样在成员是复杂类型时,结构体数组的时候,可以最小化长度。

(3)结构体对齐后的长度必须是成员中最大的对齐参数(PPB)的整数倍,这样在处理数组时可以保证每一项都边界对齐。

(4)结构体作为数据成员的对齐规则:在一个struct中包含另一个struct,内部struct应该以它的最大数据成员大小的整数倍开始存储。如 struct A 中包含 struct B, struct B 中包含数据成员 char, int, double,则 struct B 应该以sizeof(double)=8的整数倍为起始地址。**

3.实例演示:

struct A

{

char a;   //内存位置: [0]

double b;  // 内存位置: [8]...[15]

int c;    // 内存位置: [16]...[19]  ----  规则1

};     // 内存大小:sizeof(A) = (1+7) + 8 + (4+4) = 24, 补齐[20]...[23]  ----  规则3

struct B

{

int a,  // 内存位置: [0]...[3]

A b,   // 内存位置: [8]...[31]  ----  规则2

char c, // 内存位置: [32]

};     // 内存大小:sizeof(B) = (4+4) + 24 + (1+7) = 40, 补齐[33]...[39]

*注释:(1+7)表示该数据成员大小为1,补齐7位;(4+4)同理。

速率传输

image.png

交换机为独占带宽,即每个端口数据通过率为为最大100Mb/s。注意单位是Mb。因此最短时间为:
1GB/(100Mb/s)=1024MB/(12.5MB/s)=81.92s。
其中:100Mb/8=12.5MB,即8比特等于1字节。

image.png

A 答案 无上邻也无下邻的 空闲分区数加1
B 答案 有上邻无下邻的 当前空闲分区和上邻的合并 然后起始位置改变成上邻空闲区的位置 分区数不变
C 答案 有下邻无上邻 和下邻合并 起始位置不变 增加空闲区的大小
D 答案 有上邻也有下邻 此时有2个空闲区 此时这三个空闲区合并 分区数-1

image.png
image.png

跳过FIN_WAIT_2,证明被动方也完成了数据传输任务,直接把ACK和FIN一起发给了主动方,因此主动方从FIN_WAIT_1直接跳过FIN_WAIT_2进入TIME_WAIT

也就是省略了那步 服务端还有数据未发送完 先ACK确认再FIN关闭 客户端发起关闭时 服务端也无数据要传

image.png

image.png

image.png
image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354

推荐阅读更多精彩内容

  • Swift1> Swift和OC的区别1.1> Swift没有地址/指针的概念1.2> 泛型1.3> 类型严谨 对...
    cosWriter阅读 11,101评论 1 32
  • 从小喜欢画画,但也没为它去努力过。上学时课本上,草稿本我都没让它们空着,连同桌和前后排的同学的本子和书也被我画满了...
    安昵阅读 237评论 0 0
  • 竟然已成废人 那就做点有意思的 把生命交给一件事情 等浪费的差不多了 就离开 让所有人失望 让所有事失败 让自己消...
    CAChen阅读 217评论 0 0
  • 我的世界里,只有工作在工作我想要有一个人可以,带着我出去外面走一走
    ghvghh阅读 189评论 0 0
  • 又是一年一度的七夕,这让我这只单身狗很是苦恼。每次这个节日就会让我想起你。 我和你原本是没有交集的两个人,但是那一...
    安逸瑾阅读 319评论 0 0