什么是Hashmap

HashMap的结构

Map集合即Key-Value的集合,前面加个Hash,即散列,无序的。所以HashMap是一个用于存储Key-Value键值对的无序集合,每一个键值对也叫做Entry。

在JDK1.8之前,HashMap采用数组+链表实现,即使用链表处理冲突,同一hash值的节点都存储在一个链表里。但是当位于一个桶中的元素较多,即hash值相等的元素较多时,通过key值查找要遍历链表,时间复杂度为O(N),效率较低。因此JDK1.8中,HashMap采用数组+链表+红黑树实现,当链表长度超过阈值(8)时,将链表转换为红黑树,时间复杂度为O(logN),这样大大减少了查找时间。

图1 JDK1.8之前的HashMap
图2 JDK1.8的HashMap

1、链表

Node是HashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对)。来看图和具体代码:

image
//Node是单向链表,它实现了Map.Entry接口
static class Node<k,v> implements Map.Entry<k,v> { final int hash;//哈希值 final K key;//key值
    V value;//value值
    Node<k,v> next;//链表中下一个节点
}

2、红黑树

//红黑树
static final class TreeNode<k,v> extends LinkedHashMap.Entry<k,v> {
    TreeNode<k,v> parent;  //父节点
    TreeNode<k,v> left; //左子树
    TreeNode<k,v> right;//右子树
    TreeNode<k,v> prev;    //上一个同级节点
    boolean red;    //颜色属性 
}

3、位桶

transient Node<k,v>[] table;//存储(位桶)的数组

HashMap类中有一个非常重要的字段,就是 Node[] table,即哈希桶数组,明显它是一个Node的数组。

HashMap的基本数据结构是数组加链表。HashMap数组的每一个元素不止是一个Entry对象,也是一个链表的头节点。每一个Entry对象通过Next指针指向它的下一个Entry节点。当新来的Entry映射到冲突的数组位置时,只需要插入到对应的链表尾部即可。当链表长度大于8时,链表转为红黑树,以此提高查找效率。

HashMap数组每一个元素的初始值都是Null。

HashMap的重要操作

如何由 key 确定键值对在数组中的索引

  1. 调用 key 对象自身的 hashCode 函数,得到 key 的哈希值。
  2. 进一步哈希,借助移位和异或运算,使得哈希值的高位也可以参与运算
  3. 对进一步得到的哈希值进行取模运算
方法一:取 key 的哈希值,并进一步哈希,得到计算数组索引所用的哈希值
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

方法二:jdk1.7的源码,jdk1.8没有这个方法,jdk1.8把这段代码融到具体需要算数组下标的时候去了,原理不变
static int indexFor(int h, int length) {
     return h & (length-1);//由于length是2的幂,此时相当于取模运算
}

由于源码都是很优化的代码,所以能使用位运算的地方都尽量使用位运算。例如上面的代码使用位运算代替取模运算,大大提高了运算效率。而能够让位运算代替取模运算的条件是数组的长度为2的幂。因为数组的初始长度为 16,以后每次 reszie 的时候都是乘 2(左移一位),所以数组的长度总是2的幂。体现在源代码里面,就是:

if (oldCap > 0) {
    if (oldCap >= MAXIMUM_CAPACITY) {
        threshold = Integer.MAX_VALUE;
        return oldTab;
    }
    else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
             oldCap >= DEFAULT_INITIAL_CAPACITY)
        newThr = oldThr << 1; // double threshold
}

即第 6 行的这句newCap = oldCap << 1,使得新数组长度永远是旧数组长度的 2 倍。

看到这里相信有很多人会有两个疑问,
(1) 为什么数组长度为 2 的幂时,取模运算可以使用代码里的位运算代替?
(2) 为什么通过 key 对象的 hashCode 方法得到的哈希值,需要进一步哈希,使得原始哈希值的高位也参与运算?
请带着这两个问题看下面这幅图,这幅图表示的就是从原始哈希值计算得到数组索引的整个过程,n 为数组的长度:

image

解答问题(1):因为当 n 为 2 的幂时,n-1 的二进制表示就是若干个连续的二进制 1 组成的,此时做与运算就相当于取模运算。
解答问题(2):正因为取模运算,取的仅仅是二进制数据的低位部分,如果不对高位数据进行处理,那么高位数据将完全没用上,换句话说就是哈希的效果不好。

HashMap 的 put 方法(get 方法类似)

put 方法的作用是添加新的键值对或根据键去更新值,其大致流程如下:

  1. 判断数组 table 是否为 null 或长度为 0,如果是则执行 resize() 进行扩容。
  2. 计算键值 key 对应的数组下标 i,如果 table[i]==null,则直接新建节点添加,转向步骤 6。
  3. 如果table[i] 不为空,判断 key 是否就在 table[i] 的首个元素,如果是则直接对 value 进行赋值,并返回旧的 value,算法结束。
  4. 如果不是,判断 table[i] 是否为红黑树,如果是红黑树,则转入对红黑树的操作(这一块不展开讲解)。
  5. 如果不是红黑树,遍历 table[i],如果遍历过程中发现 key 已存在,则直接对 value 赋值,并返回旧的 value,算法结束。否则,将键值对插入链表尾部,然后判断插入后链表长度是否大于 8,如果是,就把链表转换为红黑树。
  6. 插入成功后,判断实际存在的键值对数量 size 是否超多了最大容量 threshold,如果超过,进行扩容。

put 方法实际上就是直接调用 putVal 函数,下面我们主要看 putVal 方法即可:

public V put(K key, V value) {
    //put 方法在调用 putVal 方法之前,先计算好了 key 的哈希值。
    return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
        boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//步骤1,判断数组是否未初始化
if ((tab = table) == null || (n = tab.length) == 0)
 n = (tab = resize()).length;
//步骤2,根据 key 的哈希值,计算数组下标
if ((p = tab[i = (n - 1) & hash]) == null)
 tab[i] = newNode(hash, key, value, null);
else {
 Node<K,V> e; K k;
//步骤3,首先判断 key 是否就在首个元素
 if (p.hash == hash &&
     ((k = p.key) == key || (key != null && key.equals(k))))
     e = p;
//步骤4,判断是否为红黑树
 else if (p instanceof TreeNode)
     e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//步骤5,为链表的情况
 else {
     for (int binCount = 0; ; ++binCount) {
         if ((e = p.next) == null) {
             p.next = newNode(hash, key, value, null);
             //链表长度大于 8,转换为红黑树
             if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                 treeifyBin(tab, hash);
             break;
         }
         //如果遍历过程中发现 key 存在,则跳出循环
         if (e.hash == hash &&
             ((k = e.key) == key || (key != null && key.equals(k))))
             break;
         p = e;
     }
 }
//如果 key 存在,则直接覆盖 value,并返回旧的 value
 if (e != null) { // existing mapping for key
     V oldValue = e.value;
     if (!onlyIfAbsent || oldValue == null)
         e.value = value;
     afterNodeAccess(e);
     return oldValue;
 }
}
++modCount;//进行了一次插入操作,HashMap 的结构变化了一次,所以自加 1
//步骤6,超过了容量限定,就扩容
if (++size > threshold)
 resize();
afterNodeInsertion(evict);
return null;
}

resize 方法(数组扩容)

扩容并不是简单的 new 一个容量更大的数组,然后把原来数组里的键值对拷贝到新数组里就行了的。还要对所有元素进行重哈希的操作,因为数组的 length 变为原来的 2 倍,原来 key 对应的 哈希值,经过取模运算后,得到的数组索引可能已经发生了变化。
看了下图就可以明白上面这段话的意思,n 为 table 的长度,图 (a) 表示扩容前的 key1 和 key2 两个 key 确定索引位置的示例,图 (b) 表示扩容后 key1 和 key2 两个 key 确定索引位置的示例。

image

元素在重哈希之后,因为 n 变为了原来的 2 倍,那么 n-1 的 mask 范围在高位会比原来多出 1 个比特。如果多出来的这个比特是 1,那么数组索引会发生如下图所示的变化:

image

因此,我们在扩容的时候,只需要对着原本的 hash 值,看新增的那个 bit 是 1 还是 0 就好了,如果是 0 的话索引不变,是 1 的话索引变为 “原索引 + oldCap”,可以参考下面 16 扩充为 32 的 resize 示意图:

image

resize 方法源代码,加上注释如下:

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        //  超过最大值就不再扩充
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 没超过最大值,就扩充为原来的2倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 计算新的resize上限
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        // 把每个bucket都移动到新的buckets中
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                // 重新计算数组索引的代码块
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        // 原索引
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        // 原索引 + oldCap
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 原索引放到 bucket 里
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 原索引 + oldCap 放到 bucket 里
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

面试常考

为什么java8以后链表数据超过8以后,就改成红黑树存储?

这就涉及到拒接服务攻击了,比如某些人通过找到你的hash碰撞值,来让你的HashMap不断地产生碰撞,那么相同key位置的链表就会不断增长,当你需要对这个HashMap的相应位置进行查询的时候,就会去循环遍历这个超级大的链表,性能及其地下。java8使用红黑树来替代超过8个节点数的链表后,查询方式性能得到了很好的提升,从原来的是O(n)到O(logn)。

为什么Hashmap是线程不安全的?

HashMap在put的时候,插入的元素超过了容量(由负载因子决定)的范围就会触发扩容操作,就是rehash,这个会重新将原数组的内容重新hash到新的扩容数组中,在多线程的环境下,存在同时其他的元素也在进行put操作,如果hash值相同,可能出现同时在同一数组下用链表表示,造成闭环,导致在get时会出现死循环,所以HashMap是线程不安全的。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,837评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,551评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,417评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,448评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,524评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,554评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,569评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,316评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,766评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,077评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,240评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,912评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,560评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,176评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,425评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,114评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,114评论 2 352

推荐阅读更多精彩内容