协同过滤

  • 协同过滤简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人通过合作的机制给予信息相当程度的回应(如评分)并记录下来以达到过滤的目的进而帮助别人筛选信息,回应不一定局限于特别感兴趣的,特别不感兴趣信息的纪录也相当重要。
  • 协同过滤又可分为评比(rating)或者群体过滤(social filtering)协同过滤以其出色的速度和健壮性,在全球互联网领域炙手可热。
  • 以用户为基础(User-based)的协同过滤、以项目为基础(Item-based)的协同过滤、以模型为基础(Model- based)的协同过滤
  • 优点
    以用户的角度来推荐的协同过滤系统有下列优点:
    能够过滤机器难以自动内容分析的信息,如艺术品,音乐等。
    共用其他人的经验,避免了内容分析的不完全或不精确,并且能够基于一些复杂的,难以表述的概念(如信息质量、个人品味)进行过滤。
    有推荐新信息的能力。可以发现内容上完全不相似的信息,用户对推荐信息的内容事先是预料不到的。可以发现用户潜在的但自己尚未发现的兴趣偏好。
    推荐个性化、自动化程度高、能够有效的利用其他相似用户的回馈信息、加快个性化学习的速度。
  • 缺点
    虽然协同过滤作为一推荐机制有其相当的应用,但协同过滤仍有许多的问题需要解决。整体而言,最典型的问题有
    新用户问题(New User Problem) 系统开始时推荐质量较差;
    新项目问题(New Item Problem) 质量取决于历史数据集;
    稀疏性问题(Sparsity);
    系统延伸性问题(Scalability)

来自百度百科

  • 要实现协同过滤的推荐算法,要进行以下三个步骤:
    收集数据——找到相似用户和物品——进行推荐
  • Item CF 和 User CF 是基于协同过滤推荐的两个最基本的算法,User CF 是很早以前就提出来了,Item CF 是从 Amazon 的论文和专利发表之后(2001 年左右)开始流行,大家都觉得 Item CF 从性能和复杂度上比 User CF 更优,其中的一个主要原因就是对于一个在线网站,用户的数量往往大大超过物品的数量,同时物品的数据相对稳定,因此计算物品的相似度不但计算量较小,同时也不必频繁更新。但我们往往忽略了这种情况只适应于提供商品的电子商务网站,对于新闻,博客或者微内容的推荐系统,情况往往是相反的,物品的数量是海量的,同时也是更新频繁的,所以单从复杂度的角度,这两个算法在不同的系统中各有优势,推荐引擎的设计者需要根据自己应用的特点选择更加合适的算法。

来自博客网

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 什么是协同过滤 协同过滤推荐(Collaborative Filtering recommendation)是在信...
    小灰灰besty阅读 34,672评论 7 52
  • 协同过滤 协同过滤简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人通过合作的机制给予...
    你猜_42e0阅读 3,502评论 0 0
  • 协同过滤的定义: 协同过滤(英语:Collaborative Filtering)简单来说是利用某兴趣相投、拥有共...
    我爱三杯茶阅读 1,252评论 0 10
  • 炒疙瘩丝是老北京风味儿小菜。疙瘩是通俗的叫法,文学一点称为芥菜头。笔者没见过芥菜的种植和收获,但知道疙瘩和蔓...
    安德路dw阅读 1,296评论 1 3
  • 一个朋友是医生,一次给癌症病人手术,打开后发现切不了,只好再缝上。他和病人解释情况,那病人是农村来的,听不懂术语,...
    颖茜阅读 468评论 0 0