机器学习:使用scikit-learn的线性回归预测Google股票

这是机器学习系列的第一篇文章。

本文将使用Pythonscikit-learn的线性回归预测Google的股票走势。请千万别期望这个示例能够让你成为股票高手。下面按逐步介绍如何进行实践。

准备数据

本文使用的数据来自www.quandl.com网站。使用Python相应的quandl库就可以通过简单的几行代码获取到我们想要的数据。本文使用的是其中的免费数据。利用下面代码就可以拿到数据:

import quandl
df = quandl.get('WIKI/GOOGL')

其中WIKI/GOOGL是数据集的ID,可以在网站查询到。不过我发现新版本的Quandl要求用户在其网站注册获取身份信息,然后利用身份信息才能读取数据。这里用到的WIKI/GOOGL数据集属于旧版本接口提供的数据,不需要提供身份信息。

通过上面代码,我们把数据获取到,并存放在df变量中。默认地,Quandl获取到的数据以PandasDataFrame存储。因此你可以通过DataFrame的相关函数查看数据内容。如下图,使用print(df.head())可以打印表格数据的头几行内容。

数据集信息

预处理数据

从上面图片我们看到数据集提供了很多列字段,例如Open记录了股票开盘价、Close记录了收盘价、Volumn记录了当天的成交量。带Adj.前缀的数据应该是除权后的数据。

我们并不需要用到所有的字段,因为我们的目标是预测股票的走势,因此需要研究的对象是某一时刻的股票价格,这样的有比较性。所以我们以除权后的收盘价Adj. Close为研究对象来描述股票价格,也就是我们选择它作为将要被预测的变量。

接下来需要考虑关于什么变量跟股票价格有关。下面代码选取了几个可能影响Adj. Close变化的字段作为回归预测的特征,并对这些特征进行处理。详细步骤请阅读注释。

import math
import numpy as np

# 定义预测列变量,它存放研究对象的标签名
forecast_col = 'Adj. Close'
# 定义预测天数,这里设置为所有数据量长度的1%
forecast_out = int(math.ceil(0.01*len(df)))

# 只用到df中下面的几个字段
df = df[['Adj. Open', 'Adj. High', 'Adj. Low', 'Adj. Close', 'Adj. Volume']]

# 构造两个新的列
# HL_PCT为股票最高价与最低价的变化百分比
df['HL_PCT'] = (df['Adj. High'] - df['Adj. Close']) / df['Adj. Close'] * 100.0
# HL_PCT为股票收盘价与开盘价的变化百分比
df['PCT_change'] = (df['Adj. Close'] - df['Adj. Open']) / df['Adj. Open'] * 100.0

# 下面为真正用到的特征字段
df = df[['Adj. Close', 'HL_PCT', 'PCT_change', 'Adj. Volume']]
# 因为scikit-learn并不会处理空数据,需要把为空的数据都设置为一个比较难出现的值,这里取-9999,
df.fillna(-99999, inplace=True)
# 用label代表该字段,是预测结果
# 通过让与Adj. Close列的数据往前移动1%行来表示
df['label'] = df[forecast_col].shift(-forecast_out)

# 最后生成真正在模型中使用的数据X和y和预测时用到的数据数据X_lately
X = np.array(df.drop(['label'], 1))
# TODO 此处尚有疑问
X = preprocessing.scale(X)
# 上面生成label列时留下的最后1%行的数据,这些行并没有label数据,因此我们可以拿他们作为预测时用到的输入数据
X_lately = X[-forecast_out:]
X = X[:-forecast_out]
# 抛弃label列中为空的那些行
df.dropna(inplace=True)
y = np.array(df['label'])

上面代码难点在理解label列的是如何生成的以及有什么用。实际上这一列的第i个元素都是Adj. Close列的第i + forecast_out个元素。我想尝试用简单文字描述:这列的每个数据是真实统计中的未来forecast_out天的收盘价。利用这一列的数据作为线性回归模型的监督标准,让模型学习出规律,然后我们才能用之预测结果。

另外X = preprocessing.scale(X)这行代码对X的数据进行规范化处理,让X的数据服从正态分布。(PS. 但是,我发现这种处理让X的数据都发生了变化,因此无法理解这样做的原因,以及为什么不会影响模型学习的结果。有知道答案的麻烦留言告告知。)

线性回归

上面我们已经准备好了数据。可以开始构建线性回归模型,并让用数据训练它。

# scikit-learn从0.2版本开始废弃cross_validation,改用model_selection
from sklearn import preprocessing, model_selection, svm
from sklearn.linear_model import LinearRegression

# 开始前,先X和y把数据分成两部分,一部分用来训练,一部分用来测试
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2)

# 生成scikit-learn的线性回归对象
clf = LinearRegression(n_jobs=-1)
# 开始训练
clf.fit(X_train, y_train)
# 用测试数据评估准确性
accuracy = clf.score(X_test, y_test) 
# 进行预测
forecast_set = clf.predict(X_lately)

print(forecast_set, accuracy)

上述几行代码就是使用scikit-learn进行线性回归的训练和预测过程。我们可以通过测试数据计算模型的准确性accuracy,并且通过向模型提供X_lately计算预测结果forecast_set

我运行得到的结果如下:


运行结果

需要注意到的这个准确性accuracy并不表示模型预测100天的数据有97天是正确的。它表示的是线性模型能够描述统计数据的信息的一个统计概念。在后续的文章我可能会对这个变量进行一些讨论。

绘制走势

最后我们使用matplotlib让数据可视化话。详细步骤看代码注释。

import matplotlib.pyplot as plt
from matplotlib import style
import datetime

# 修改matplotlib样式
style.use('ggplot')

one_day = 86400
# 在df中新建Forecast列,用于存放预测结果的数据
df['Forecast'] = np.nan
# 取df最后一行的时间索引
last_date = df.iloc[-1].name
last_unix = last_date.timestamp()
next_unix = last_unix + one_day

# 遍历预测结果,用它往df追加行
# 这些行除了Forecast字段,其他都设为np.nan
for i in forecast_set:
    next_date = datetime.datetime.fromtimestamp(next_unix)
    next_unix += one_day
    # [np.nan for _ in range(len(df.columns) - 1)]生成不包含Forecast字段的列表
    # 而[i]是只包含Forecast值的列表
    # 上述两个列表拼接在一起就组成了新行,按日期追加到df的下面
    df.loc[next_date] = [np.nan for _ in range(len(df.columns) - 1)] + [i]

# 开始绘图
df['Adj. Close'].plot()
df['Forecast'].plot()
plt.legend(loc=4)
plt.xlabel('Date')
plt.ylabel('Price')
plt.show()

运行代码可以得到下图。

预测结果

上图红色部分为采集到的已有数据,蓝色部分为预测数据。

点击这里看一查看完整代码

本文来自同步博客

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342

推荐阅读更多精彩内容