Java8新特性系列(流性能)

题图:by pixel2013 From pixabay

上期介绍了Java8中Stream的新特性,本期我们将测试下streamparallelStream的性能以及应用的场景。

先上代码

public class StreamTest {

    private static final int MAX_INT = 1_000_000;

    public static void stream() {
        List<String> list = new ArrayList<>();
        IntStream.range(0, MAX_INT).forEach(value -> {
            UUID uuid = UUID.randomUUID();
            list.add(uuid.toString());
        });

        long startTime = System.nanoTime();

        list.stream().sorted().collect(Collectors.toList());

        long endTime = System.nanoTime();
        long durationTime = TimeUnit.NANOSECONDS.toMillis(endTime - startTime);
        System.out.println("stream execute time : " + durationTime);
    }

    public static void parallelStream() {
        List<String> list = new ArrayList<>();
        IntStream.range(0, MAX_INT).forEach(value -> {
            UUID uuid = UUID.randomUUID();
            list.add(uuid.toString());
        });

        long startTime = System.nanoTime();

        list.parallelStream().sorted().collect(Collectors.toList());

        long endTime = System.nanoTime();
        long durationTime = TimeUnit.NANOSECONDS.toMillis(endTime - startTime);
        System.out.println("parallelStream execute time : " + durationTime);
    }

    public static void main(String[] args) {
        stream();
        parallelStream();
    }
}

MAX_INT = 1_000_000; //Jav8中数字可以用_间隔,类似1,000,000

Max_INT为1时,结果为:
stream execute time : 6
parallelStream execute time : 8

Max_INT为100时,结果为:
stream execute time : 7
parallelStream execute time : 7

Max_INT为1_000时,结果为:
stream execute time : 15
parallelStream execute time : 22

Max_INT为10_000时,结果为:
stream execute time : 28
parallelStream execute time : 21

Max_INT为100_000时,结果为:
stream execute time : 98
parallelStream execute time : 62

Max_INT为1_000_000时,结果为:
stream execute time : 742
parallelStream execute time : 429

Max_INT为5_000_000时,结果为:
stream execute time : 4299
parallelStream execute time : 2191

Max_INT为10_000_000时,结果为:
stream execute time : 9849
parallelStream execute time : 6923

分析

并行适用的场景?

  • 有大量的元素要处理
  • 性能问题是首要考虑的
  • 没有在一个多线程的环境中

所以如Java Web应用,底层都是Servlet,我们知道,Servlet是多线程的,所以在web应用中并行流并不适用,而对于数据的处理、算法的验证等单线程环境是适用的。

原理

并行流底层其实是ForkJoinPool ,用的是分治法,即Fork/Join方法

当执行新的任务时它可以将其拆分分成更小的任务执行,并将小任务加到线 程队列中,然后再从一个随机线程的队列中偷一个并把它放在自己的队列中。

相对于一般的线程池实现,fork/join框架的优势体现在对其中包含的任务的处理方式上,在一般的线程池中,如果一个线程正在执行的任务由于某些原因无法继续运行,那么该线程会处于等待状态。而在fork/join框架实现中,如果某个子问题由于等待另外一个子问题的完成而无法继续运行.那么处理该子问题的线程会主动寻找其他尚未运行的子问题来执行。这种方式减少了线程的等待时间,提高了性能。

public static void main(String[] args) {
    ForkJoinPool pool = ForkJoinPool.commonPool();
    System.out.println(pool.getParallelism());
}

结果:
3

我们可以通过参数来修改:

WX20171230-125634@2x.png

结果:
10

总结

如何高效使用并行流?

  • 如果用循环还是顺序流或者是并行流,像我们上面那样测试一下;
  • 注意装箱,尽量使用IntStream, LongStream,和DoubleStream来避免装箱拆箱;
  • 有些操作在并行流上性能很差,比如limitfindFirst等依赖顺序的操作。unordered方法可以把有序流转为无序流,使用findAny等好很多,在无序流上用limit也好很多;
  • 计算流水线操作总成本,处理单个元素用时越多,并行就越划算;
  • 对于较小的数据量,用并行不一定是好事儿;
  • 区分单线程和多线程,多线程下并行不一定是好事儿;
  • 数据结果是否易于分解,比如ArrayListLinkedList易于分解,range创建的原始流也易于分解;
  • 终端操作中的合并大家是否很大,大了也不划算。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,186评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,858评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,620评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,888评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,009评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,149评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,204评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,956评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,385评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,698评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,863评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,544评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,185评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,899评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,141评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,684评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,750评论 2 351