Python爬取《西虹市首富》猫眼电影评论并分析

最近有部叫《西虹市首富》的电影特别火,所说一周票房就破10亿了。那么,这部电影到底有哪些人在看,有哪些评论,我们通过大数据来分析一下。

Scrapy的使用就不多说了,猫眼电影的评论也没有反爬措施,你们自己去体会一下。通过APP端接口直接爬取评论,不过只能看到前15000条评论,但对我们来说也足够了。

下面是爬虫部分的代码:

# -*- coding: utf-8 -*-
import scrapy
import json
from movie.items import MovieItem

class MovieSpider(scrapy.Spider):

    name = 'rich'
    allowed_domains = ['maoyan.com']

    start_urls = []
    for i in range(1, 1001):
        base_url = "http://m.maoyan.com/mmdb/comments/movie/1212592.json?_v_=yes&offset=" + str(i)
        start_urls.append(base_url)

    def parse(self, response):
        jcontent = json.loads(response.body)
        jcmts = jcontent['cmts']
        for each in jcmts:
            item = MovieItem()
            user = each['nickName']
            city = each['cityName']
            comment = each['content']
            stars = each['score']

            item['user'] = str(user).strip()
            item['city'] = str(city).strip()
            item['comment'] = str(comment).strip()
            item['stars'] = str(stars).strip()

            yield item

爬完之后,我们到数据库中看到的数据如下图:

2018-08-04-15-10-32

这里明眼人一看就知道了,有很多重复的评论,很明显是有人刷出来的,至于是谁刷的,就不关咱们的事了。

数据库去重的方法很多,不过我们还可以借助Excel来去重,也非常方便。

重点来了,去重后的评论只有800多条!呵呵了

2018-08-04-15-15-40

Anyway,我们也得到了一些评论...

就着这些评论,我们来分析一下。

首先用jieba和wordcloud这个库做了个词云,效果如下:

2018-08-04-15-36-13

Python代码如下。有些地方要注意的:

  1. jieba要支持中文,需要中文字体,我这里下载了msyh.ttf(微软雅黑)的字体放在本地
  2. "shen.webp" 是原图,用来做Mask的,从豆瓣上下载的
  3. 以下程序支持txt、数据库、Excel读取评论这三种方式
#-*-coding:utf-8-*-
 
import matplotlib.pyplot as plt
from wordcloud import WordCloud, STOPWORDS
import numpy as np
import jieba
import pymysql
from openpyxl import Workbook
from openpyxl import load_workbook
from PIL import Image
from pyecharts import Bar, Pie

class CommentAnalysis():
    
    def __init__(self, *args, **kwargs):
        
        # 配置
        self.width = 900
        self.height = 1200
        self.max_words = 300
        self.font_path = "msyh.ttf"
        self.max_font_size = 200
        self.random_state = 30
        self.mask = np.array(Image.open("shen.webp"))

        self.stars = []
        self.citys = []
        self.text = ""

        #设置词云
        self.wc = WordCloud(
            background_color = "white", #设置背景颜色
            width = self.width,
            height = self.height,
            mask = self.mask,  #设置背景图片
            max_words = self.max_words, #设置最大显示的字数
            stopwords = self.SetStopWords(), #设置停用词
            font_path = self.font_path,
            max_font_size = self.max_font_size,  #设置字体最大值
            random_state = self.random_state, #设置有多少种随机生成状态,即有多少种配色方案
            )

        # 连接数据库
        self.dbName = "movie"
        self.dbTable = "rich"
        self.dbHost = "localhost"
        self.dbPort = "3306"
        self.dbUser = "root"
        self.dbPwd = "3.1415926"

    def LoadCmtFromText(self, filename):
        text = open(filename,"rb").read()
        #结巴分词
        wordlist = jieba.cut(text, cut_all=False, HMM=False)
        wl = " ".join(wordlist)
        #print(wl)#输出分词之后的txt
        return wl
    
    # 连接数据库
    def ConnectDB(self):
        try:
            self.db = pymysql.connect(host=self.dbHost,
                                      port=int(self.dbPort),
                                      user=self.dbUser,
                                      password=self.dbPwd,
                                      db=self.dbName,
                                      use_unicode=True,
                                      charset="utf8")
            # print('连接上了')
            self.cursor = self.db.cursor()
            return True
        except Exception:
            # print(u"连接服务器失败!")
            return False


    def LoadCmtFromDB(self):
        self.ConnectDB()
        sql = """
            SELECT * FROM rich 
        """
        self.cursor.execute(sql)
        results = self.cursor.fetchall()
        # print(results)
        cmt = ""
        for rows in results:
            cmt += rows[4] + "\n"
        # print(text)
        # 结巴分词
        wordlist = jieba.cut(cmt, cut_all=False, HMM=False)
        wl = " ".join(wordlist)
        return wl

    def LoadCmtFromExcel(self, filename, sheetname):
        wb = load_workbook(filename)
        ws = wb[sheetname]
        ws_rows_len = 10000 # 评论总行数
        cmt_column = 5 # 评论所在列
        stars_column = 4 # 评分所在列
        city_column = 3 # 城市所在列
        # 有效行开始
        start_rows = 1
        # 评论
        cmt = ""
        for row in range(start_rows, ws_rows_len+1):
            cmt_data = ws.cell(row=row, column=cmt_column).value
            stars_data = ws.cell(row=row, column=stars_column).value
            city_data = ws.cell(row=row, column=city_column).value
            if cmt_data:
                cmt += cmt_data + "\n"
            if stars_data:
                self.stars.append(stars_data)
            if city_data:
                self.citys.append(city_data)
        # print(cmt)
        # 结巴分词
        wordlist = jieba.cut(cmt, cut_all=False, HMM=False)
        self.text = " ".join(wordlist)

    def SetStopWords(self):

        stopwords = STOPWORDS.copy()

        stopwords.add("电影")

        return stopwords

    def ScoresCount(self, data):
        dict = {}
        for key in data:
            dict[key] = dict.get(key, 0) + 1
        # print(dict)
        return dict

    def Render(self):
        attr = ["0.5分", "1分", "1.5分", "2分", "2.5分", "3分", "3.5分", "4分", "4.5分", "5分"]
        stars_dict = self.ScoresCount(self.stars)
        data = [stars_dict["0.5"], 
                stars_dict["1"],
                stars_dict["1.5"],
                stars_dict["2"],
                stars_dict["2.5"],
                stars_dict["3"],
                stars_dict["3.5"],
                stars_dict["4"],
                stars_dict["4.5"],
                stars_dict["5"]]

        bar = Bar()
        bar.add("《西虹市首富》评分", attr, data)
        bar.render()

        # pie = Pie("饼图-圆环图示例", title_pos='center')
        # pie.add("商品B", attr, data, center=[50, 50], is_random=True,
        # radius=[50, 75], rosetype='area',
        # is_legend_show=False, is_label_show=True)
        # pie.render()


    # 数据处理
    def ProcessData(self):
        # 通过txt读取内容
        # wl = self.LoadCmtFromText("rich.txt")
        # 通过数据库读取内容
        # text = self.LoadCmtFromDB()
        # 通过Excel读取内容
        self.LoadCmtFromExcel("rich.xlsx", "rich")
        self.myword = self.wc.generate(self.text)#生成词云

    # 显示
    def Show(self):
        # 显示Mask
        plt.subplot(1,2,1)
        plt.imshow(self.mask)
        plt.axis("off")
        # 显示词云图
        plt.subplot(1,2,2)
        plt.imshow(self.myword)
        plt.axis("off")
        plt.show()

if __name__ == "__main__":
    cmt = CommentAnalysis()
    cmt.ProcessData()
    cmt.Render()
    cmt.Show()

再把评分画个图如下(代码中的Render函数):


2018-08-04-16-15-14
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350