因子分析计算权重流程

因子分析两类权重计算方法总结

一、案例背景

疫情爆发以来,越来越多的人为了避免线下与人接触,选择了线上购买生活必需品。网购虽然方便快捷,但是随着订单压力的增加,物流问题也随之出现,近期有很多卖家收到物流投诉的问题。淘宝某网店想要使用因子分析研究物流服务质量不同维度所占权重的情况,采用随单进行问卷调查的方式,共收集到200份数据,其中14个项调查数据可分为可靠性、经济性、时间性、灵活性4个维度。具体维度划分见下表:

二、前期准备

在使用因子分析计算权重的前期,需要按照因子分析的流程完成因子分析适用性判断、对应关系调整以及因子命名这3项准备工作。

(1)因子分析适用性判断

因子分析适用性通过KMO值和Bartlett球形度检验进行判断;KMO值是一个用于检验是否适合因子分析的指标,一般大于0.6即说明数据适合进行因子分析。Bartlett球形度检验对应的p值小于0.05则说明适合进行因子分析。

(2)对应关系调整

分析14个指标与因子的对应关系;如果对应关系与预期4个维度基本一致,比如经过因子分析后隶属于“可靠性”这一维度的三个指标“包装完好”、“信息保密”、“退货包运费”确实属于“可靠性”这一维度,则说明对应关系良好;否则,则说明指标与因子对应关系需要进行调整。当指标与因子对应关系出现严重偏差的时候可以将指标做删除处理。关于对应关系调整这一部分内容,不是本篇文章讲解的重点内容,可以参考SPSSAU帮助手册进行学习https://spssau.com/helps/advancedmethods/factor.html。

(3)因子命名

在第二步指标项与因子对应关系调整好之后,就可以结合专业知识,对信息浓缩完成的4个因子进行因子命名。比如,“运费合理”、“个性化服务”、“退换货费用”、“误差处理”这四个指标可以代表物流服务的价格是否经济合理,那么就可以将提取出的因子命名为“经济性”。本案例在初始阶段已经预设将指标项分为可靠性、经济性、时间性、灵活性四个维度。

三、因子权重计算

因子权重计算是指经过因子分析后,信息浓缩为几个因子,要计算这几个因子的权重大小,即各个因子所占比重的大小。比如在本案例中,因子权重计算是指计算“可靠性”、“经济性”、“时间性”、“灵活性”这四个维度的权重值。因子权重计算主要利用下图所示表格进行计算,如下图:

(1)基本概念

1特征根:

特征根在因子分析中被用来解释因子的总贡献,特征根越大,说明因子越重要。特征根一般还可用于自动确定因子最佳个数,通常以大于1作为标准(多数情况自行设置因子个数)。

2方差解释率

方差解释率是因子提取的信息量;方差解释率=特征根/总分析项个数。比如上图中因子1的方差解释率=7.910/13=0.6084,意味着该因子共提取出这13个分析项60.845%的信息。

3累计方差解释率

因子累计提取出的信息量

4最大方差旋转法

最大方差旋转法是一种因子分析旋转方法,它的目标是使每个因子的方差尽可能大。这种方法的基本思想是将每个因子的载荷矩阵进行调整,使得每个因子的方差尽可能大。

5旋转后方差解释率

经过最大方差旋转后因子的方差解释率。使用旋转后方差解释率,可以提高分析的准确性和可解释性。

(2)计算原理

因子权重计算主要使用旋转后方差解释率和旋转后累计方差解释率进行计算。因为在经过因子旋转后,更有利于应用现实语言描述所得因子,使公共因子更具有实际意义。可以更突出各个因子的典型代表变量是谁,这样更容易发觉因子的作用。旋转的目的是通过改变坐标轴位置,重新分配各个因子所解释方差比例,使其载荷系数更接近1或0,能更好地解释和命名变量。旋转后的因子不改变模型对数据的拟合程度,也不改变各个变量的公因子方差,使因子结构变得更简单。所以,使用旋转后方差解释率可以提高因子分析的可解释性。

(3)计算示例

从上表可知:4个因子旋转后的方差解释率分别是33.530%,32.248%,12.046%,10.571%,旋转后累积方差解释率为88.395%。旋转后方差解释率归一化,可以得到4个因子的权重,计算如下:

因子1(时间性)权重=33.530% / 88.395%=0.379

因子2(经济性)权重=32.248% / 88.395%=0.365

因子3(灵活性)权重=12.046% / 88.395%=0.136

因子4(可靠性)权重=10.571% / 88.395%=0.120

计算得到,关于该淘宝网店物流服务质量研究的四个维度:时间性、经济性、灵活性、可靠性的权重分别是0.379、0.365、0.136、0.120。

四、指标权重计算

因子权重计算完成后,还可以进行指标项权重计算。指标权重计算是指,所有指标项所占权重。比如在本例中“包装完好”、“信息保密”“退换货保障”等14个指标项各自所占的权重。或者可以将因子权重理解为一级指标权重,将指标权重理解为二级指标权重。计算指标权重,主要使用到两个指标,分别是线性组合系数和综合得分系数,下面将逐个进行说明。

(1)线性组合系数

线性组合系数可用于表述信息浓缩的大小,计算线性组合系数,公式为:loading矩阵/Sqrt(eigen),即载荷系数除以对应特征根的平方根。

(2)综合得分系数

综合得分系数可用于衡量指标所占信息比重的大小,综合得分系数越大,说明指标所携带信息越大,指标权重越大。计算综合得分系数,公式为:累积(线性组合系数*方差解释率)/累积方差解释率,即线性组合系数分别与方差解释率相乘后累加,然后除以累积方差解释率;

如上图:可靠性1综合得分系数=(0.0898*33.53%+0.2706*32.25%+0.0951*12.05%+0.6573*10.57%)/(33.53%+32.25%+12.05%+10.57)=0.2244

(3)计算示例

计算指标权重,将综合得分系数进行归一化处理即得到各指标权重值;

如上图:可靠性1权重=(0.2244/∑综合得分系数)*100%=7.54%

可靠性2权重=(0.2340/∑综合得分系数)*100%=7.86%

其他指标权重计算过程同上。

注:上述loading矩阵,特征根eigen,方差解释率或累积方差解释率均为旋转后对应值

五、总结

因子权重计算与指标权重计算都可以通过SPSSAU因子分析输出的结果进行计算。因子权重使用旋转后方差解释率以及旋转后累计方差解释率进行计算;指标项权重使用归一化综合得分系数进行计算。虽然指标项计算过程略显复杂,但SPSSAU会在线性组合系数及权重结果这张表中自动输出权重值,大大简化了手动计算的繁琐步骤。

如果使用了因子分析计算因子权重后,不想再使用因子分析计算指标项权重,那么可以使用其他权重计算方法进行指标项权重的计算。例如,可以使用熵值法进行指标项权重计算,那么这里就使用了因子分析与熵值法两种计算权重的方法,可以丰富研究方法。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,036评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,046评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,411评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,622评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,661评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,521评论 1 304
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,288评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,200评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,644评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,837评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,953评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,673评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,281评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,889评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,011评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,119评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,901评论 2 355

推荐阅读更多精彩内容

  • 一、案例说明 案例背景与研究目的 研究短视频平台不同维度所占权重情况,调查搜集了200份数据其中20项可分为品牌...
    spssau阅读 4,779评论 0 9
  • 权重体系构建常见于企业财务竞争力体系,绩效权重体系或者管理者领导力权重体系模型等。 常用的权重研究分析方法中,AH...
    spssau阅读 652评论 0 1
  • 计算权重是一种常见的分析方法,在实际研究中,需要结合数据的特征情况进行选择,比如数据之间的波动性是一种信息量,那么...
    spssau阅读 6,434评论 1 5
  • 对于量表类问卷权重研究,不同于我们之前介绍的影响关系类研究,其关注重心在于通过计算各个指标或者题项的权重得分值,最...
    spssau阅读 3,757评论 0 4
  • 一、研究场景 因子分析(探索性因子分析)用于探索分析项(定量数据)应该分成几个因子(变量),比如20个量表题项应该...
    spssau阅读 1,308评论 0 4