在这个人人都说大数据的时代,许多人对大数据的印象只是停留在仰望的阶段,其实大数据没人们说得那么神奇、玄乎或者是无所不能,今天我们就以传统数据作为比对,看看大数据究竟有什么特点让其处于时代的浪潮之巅。
大数据与传统数据相比的主要特点可以概括为:数据量“大”、数据类型“复杂”、数据价值“无限”(如图所示)。
数据量大十分好理解,以前我们存储数据使用的单位是 KB,一个Excel表格也就几十到几百KB,现在我们经常说到GB甚至是TB乃至PB的数据量级,它们的数量关系如下所示。
1MB=1024KB
1GB=1024MB
1TB=1024GB
1PB=1024TB
更直观一点,1KB相当于512个汉字,1MB就相当于六本红楼梦的字数……而淘宝网在2015年3月每天大约能产生7TB的数据量,相当于4000万本红楼梦的数据量,而中国最大的图书馆中国国家图书馆的藏书量是3000万册。
由此看来,我们的大数据着实是数据量巨大了。而只说能够产生如此大量数据的原因有哪些呢?
我们不妨从数据获取的方式、数据传输的方式和数据存储的方式来探讨数据量大的这个问题。
数据获取方式的质变是大数据能够产生的核心要素。传统的数据获取方式多是以人工的方式获取数据,最大的特点是手动输入数据,曾有一段时间,超市是通过要求收银员键入用户特征来采集用户数据的,键盘的样子大体上会是如图所示的造型。
超市通过这样的方式来收集用户的数据,试想在超市每天如此大的接待量情况下,收银员能否保证数据录入的准确性呢?传统记录数据的方式必定只能是小范围的,少量的和准确度欠佳的。而现在的数据获取方式大多是通过URL传输和API接口,大体上数据获取的方式有这样几类:爬虫抓取、用户留存、用户上传、数据交易和数据共享(如图所示)。
大数据与传统数据的另一个显著差异是数据类型的丰富。传统数据更注重于对象的描述,而大数据更倾向与对数据过程的记录。为了便于大家理解,下面简单的举个例子说明传统数据与大数据的记录方式有何区别。
传统数据的记录方式如表所示。
大数据的记录方式如表所示。
很明显地看到,传统数据和大数据记录数据的最大区别是大数据不仅对对象进行了描述,还加入了时间、地点等维度,这样的数据记录的是一个过程。而传统数据的记录方式更倾向于对结果的简单描述。当然,大数据能记录的用户就餐数据远不局限于上述所列的字段,理想状况的大数据监控甚至会记录用户吃饭的方式、吃饭时的行为、吃饭时的面部表情等一系列数据,这些数据反映了用户对就餐环境的感受,对餐食口味的反应,进一步可以用来改进就餐环境、食物口味,给出点餐建议。
大数据与传统数据的核心差异在于其价值的不可估量。传统数据的价值体现在信息传递与表征,是对现象的描述与反馈,让人通过数据去了解数据。而大数据是对现象发生过程的全记录,通过数据不仅能够了解对象,还能分析对象,甚至能了解对象自己都不知道的信息。
诸如某百科对一个人的描述与概括,记录了这个人的身高、体重、出生年月、兴趣爱好、日常活动、亲朋好友等数据,这些算是传统数据,通过这些传统数据你能知道和认识这个人。如果用大数据的方式来记录一个人,那就可以详细到他几点起床、睡眠质量、身体状况、每个时间点在做什么事等一系列过程数据,通过这些过程数据我们不仅知道和认识这个人,还能知道他的习惯性格,甚至能挖掘出隐藏在生活习惯中的情绪与内心活动等信息。这些都是传统数据所无法体现的,也是大数据承载信息的丰富之处,在丰富的信息背后隐藏着巨大的价值,这些价值甚至能帮助人们达到“所思即所得”的境界。
大数据价值的特殊之处就在于它的可挖掘性,同样的一堆数据,不同的人能得到不同层次的东西。就好像同样见一个人,有些人只看他的外貌好不好看,有些人能从他的表情中读出心理活动,从眼神中看出阅历,从衣着打扮中读出品味,从鞋子上读出生活习惯。而这些深层次的非表象的内容需要技巧与实力去挖掘出来,这就是我们说的数据分析与数据挖掘。
文章来源
内容简介
《从1开始——数据分析师成长之路》从简单的制作报表开始和大家一起学习数据分析的五大模块:报表BI系统、异常数据分析、解决数据需求、项目性数据分析以及数据建模,为大家全方位、体系化地呈现数据分析到底是什么。