17、pandas的merge合并函数

在使用Excel时,我用的最多函数就是vlookup;在使用SQL查询的时候,我用的最多应该是join;这两个都有相同的功能,将多表匹配、合并,然后达到对比、查漏等等效果。在pandas里面也有类似的功能函数就是pd.merge()(pd是指 导入的pandas库)。merge的用法跟SQL中join很像。

df1


df2

使用merge进行合并:

使用merge进行合并

基本的结构为:pd.merge(df1,df2,合并方式,df1合并用的键,df2合并用的键)。

后面两个参数在合并的时候两个表格使用的键的列名是一样的时候可以改成on='title'

on='title'

结果和第一种方式是一样的。

使用合并的时候pandas会默认只选取一个相同的键列名,然后其它的数据进行合并。

注意到两张表格中有一个location_road是共同具有的一个列,因此合并之后两个表格的location_road列分别加上了_x和_y的后缀以便区分,这两个后缀也可以修改的(使用suffixes函数进行修改):

使用suffixes函数修改后缀

merge函数还可以只取其中的某几列数据进行合并:

选择某几列进行合并

选择某几列的时候需要注意的是如果使用on参数,那么此参数指定的值两个表格都要有;还有一个非常重要的就是选择多列的时候使用的是两个中括号

使用merge合并方式有left, inner, right,outer,通过how参数来指定。

how = 'inner'表示的是只合并两个表格都具有的行;

how = 'left'表示的是合并之后显示的是第一个表格里的所有行;

how = 'left'
第一个表与合并之后的表对比

how = 'right'表示的是合并之后显示的是第二个表格里所有的行;

how = 'right'
第二个表与合并之后的表对比

细心的人肯定会发现了,为什么使用how = 'right'合并之后的行数不是等于第二个表的行数呢?这是因为在第一个表的title列中有一个重复值被计算进去了,所有多了一行(关于重复值的去除方法可以参考duplicated那篇的内容)。

how = 'outer'表示的是两个表格里所有的行都进行合并。

how = 'outer'

在使用left,right,outer的时候会产生空值,只要在语句的后面加.fillna(o)就可以填充空值了。

填充空值之后的表格

这也是pandas很方便的一个特点:多个函数可以连在一起使用,只要用点连接起来就可以了。

如果合并的时候要用索引作为键的话就不能用on,left_on和right_on了,而是要使用left_index=True, right_index=True(也就是以索引为标准来进行表联结,而不是两个表共同拥有的列)。

保留连接的列

因为是以索引作为联结的,所以title不是对应的,这个暂时还不清楚有什么比较好的应用场景。

还有这个方法合并的时候是安装键的顺序进行排列的,如果两个表都很大的话合并时就会很慢,如果不需要排序就需要添加参数sort=False。

merge还有一个参数,indicator=True,这个参数会添加一列用来注明每一行是来自于哪个表的:

使用indicator=True

以上所说的都是横向合并,那么如果要进行纵向合并要怎么操作呢?

merge()里并没有axis=0这个参数,如果需要纵向匹配合并的话可以先将表格转置(.T)之后再进行合并。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,816评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,729评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,300评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,780评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,890评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,084评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,151评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,912评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,355评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,666评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,809评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,504评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,150评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,121评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,628评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,724评论 2 351

推荐阅读更多精彩内容