pytorch api:TransformerEncoderLayer-TransformerDecoderLayer-TransformerEncoder-TransformerDecoder...

1. torch.nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward=2048, dropout=0.1, activation='relu')

TransformerEncoderLayer is made up of self-attn and feedforward network. This standard encoder layer is based on the paper “Attention Is All You Need”. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application.

Parameters:
  • d_model – the number of expected features in the input (required).
  • nhead – the number of heads in the multiheadattention models (required).
  • dim_feedforward – the dimension of the feedforward network model (default=2048).
  • dropout – the dropout value (default=0.1).
  • activation – the activation function of intermediate layer, relu or gelu (default=relu).
Examples:
encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
src = torch.rand(10, 32, 512)
out = encoder_layer(src)
print(out.size())

# Results:
torch.Size([10, 32, 512])
forward(src, src_mask=None, src_key_padding_mask=None)

Pass the input through the encoder layer.

Parameters:
  • src – the sequence to the encoder layer (required).
  • src_mask – the mask for the src sequence (optional).
  • src_key_padding_mask – the mask for the src keys per batch (optional).
Shape:

see the docs in Transformer class.


SOURCE CODE

class TransformerEncoderLayer(Module):

    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu"):
        super(TransformerEncoderLayer, self).__init__()
        self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        self.linear1 = Linear(d_model, dim_feedforward)
        self.dropout = Dropout(dropout)
        self.linear2 = Linear(dim_feedforward, d_model)

        self.norm1 = LayerNorm(d_model)
        self.norm2 = LayerNorm(d_model)
        self.dropout1 = Dropout(dropout)
        self.dropout2 = Dropout(dropout)

        self.activation = _get_activation_fn(activation)

    def __setstate__(self, state):
        if 'activation' not in state:
            state['activation'] = F.relu
        super(TransformerEncoderLayer, self).__setstate__(state)

    def forward(self, src, src_mask=None, src_key_padding_mask=None):
        # type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tensor

        src2 = self.self_attn(src, src, src, attn_mask=src_mask,
                              key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src

2. torch.nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward=2048, dropout=0.1, activation='relu')

TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network. This standard decoder layer is based on the paper “Attention Is All You Need”. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application.

Parameters:
  • d_model – the number of expected features in the input (required).
  • nhead – the number of heads in the multiheadattention models (required).
  • dim_feedforward – the dimension of the feedforward network model (default=2048).
  • dropout – the dropout value (default=0.1).
  • activation – the activation function of intermediate layer, relu or gelu (default=relu).
Examples:
decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
memory = torch.randn(10, 32, 512)
tgt = torch.randn(20, 32, 512)
out = decoder_layer(tgt, memory)
print(out.size())

# Results:
torch.Size([20, 32, 512])
forward(tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None)

Pass the inputs (and mask) through the decoder layer.

Parameters:
  • tgt – the sequence to the decoder layer (required).
  • memory – the sequence from the last layer of the encoder (required).
  • tgt_mask – the mask for the tgt sequence (optional).
  • memory_mask – the mask for the memory sequence (optional).
  • tgt_key_padding_mask – the mask for the tgt keys per batch (optional).
  • memory_key_padding_mask – the mask for the memory keys per batch (optional).
Shape:

see the docs in Transformer class.


SOURCE CODE
class TransformerDecoderLayer(Module):
    
    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu"):
        super(TransformerDecoderLayer, self).__init__()
        self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
        self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        self.linear1 = Linear(d_model, dim_feedforward)
        self.dropout = Dropout(dropout)
        self.linear2 = Linear(dim_feedforward, d_model)

        self.norm1 = LayerNorm(d_model)
        self.norm2 = LayerNorm(d_model)
        self.norm3 = LayerNorm(d_model)
        self.dropout1 = Dropout(dropout)
        self.dropout2 = Dropout(dropout)
        self.dropout3 = Dropout(dropout)

        self.activation = _get_activation_fn(activation)

    def __setstate__(self, state):
        if 'activation' not in state:
            state['activation'] = F.relu
        super(TransformerDecoderLayer, self).__setstate__(state)

    def forward(self, tgt, memory, tgt_mask=None, memory_mask=None,
                tgt_key_padding_mask=None, memory_key_padding_mask=None):
        # type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor
        tgt2 = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask,
                              key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)
        tgt2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout3(tgt2)
        tgt = self.norm3(tgt)
        return tgt

    def _get_clones(module, N):
         return ModuleList([copy.deepcopy(module) for i in range(N)])

    def _get_activation_fn(activation):
        if activation == "relu":
            return F.relu
        elif activation == "gelu":
            return F.gelu

        raise RuntimeError("activation should be relu/gelu, not {}".format(activation))

3. torch.nn.TransformerEncoder(encoder_layer, num_layers, norm=None)

TransformerEncoder is a stack of N encoder layers

Paremeters:
  • encoder_layer – an instance of the TransformerEncoderLayer() class (required).
  • num_layers – the number of sub-encoder-layers in the encoder (required).
  • norm – the layer normalization component (optional).
Examples:
encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
src = torch.randn(10, 32, 512)
out = transformer_encoder(src)
print(out.size())

# Results:
torch.Size([10, 32, 512])
forward(src, mask=None, src_key_padding_mask=None)

Pass the input through the encoder layers in turn.

Parameters:
  • src – the sequence to the encoder (required).
  • mask – the mask for the src sequence (optional).
  • src_key_padding_mask – the mask for the src keys per batch (optional).
Shape:

see the docs in Transformer class.


SOURCE CODE

class TransformerEncoder(Module):
   
    __constants__ = ['norm']

    def __init__(self, encoder_layer, num_layers, norm=None):
        super(TransformerEncoder, self).__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm

    def forward(self, src, mask=None, src_key_padding_mask=None):
        # type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tensor
        output = src

        for mod in self.layers:
            output = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask)

        if self.norm is not None:
            output = self.norm(output)

        return output

4. torch.nn.TransformerDecoder(decoder_layer, num_layers, norm=None)

TransformerDecoder is a stack of N decoder layers

Parameters:
  • decoder_layer – an instance of the TransformerDecoderLayer() class (required).
  • num_layers – the number of sub-decoder-layers in the decoder (required).
  • norm – the layer normalization component (optional).
Examples:
decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
memory = torch.rand(10, 32, 512)
tgt = torch.rand(20, 32, 512)
out = transformer_decoder(tgt, memory)
print(out.size())

# Results:
torch.Size([20, 32, 512])
forward(tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None)

Pass the inputs (and mask) through the decoder layer in turn.

Parameters:
  • tgt – the sequence to the decoder (required).
  • memory – the sequence from the last layer of the encoder (required).
  • tgt_mask – the mask for the tgt sequence (optional).
  • memory_mask – the mask for the memory sequence (optional).
  • tgt_key_padding_mask – the mask for the tgt keys per batch (optional).
  • memory_key_padding_mask – the mask for the memory keys per batch (optional).
Shape:

see the docs in Transformer class


SOURCE CODE

class TransformerDecoder(Module):
    
    __constants__ = ['norm']

    def __init__(self, decoder_layer, num_layers, norm=None):
        super(TransformerDecoder, self).__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm

    def forward(self, tgt, memory, tgt_mask=None,
                memory_mask=None, tgt_key_padding_mask=None,
                memory_key_padding_mask=None):
        # type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor
        
        output = tgt

        for mod in self.layers:
            output = mod(output, memory, tgt_mask=tgt_mask,
                         memory_mask=memory_mask,
                         tgt_key_padding_mask=tgt_key_padding_mask,
                         memory_key_padding_mask=memory_key_padding_mask)

        if self.norm is not None:
            output = self.norm(output)

        return output

5. torch.nn.Transformer(d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, activation='relu', custom_encoder=None, custom_decoder=None)

A transformer model. User is able to modify the attributes as needed. The architecture is based on the paper “Attention Is All You Need”. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users can build the BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.

Parameters:
  • d_model – the number of expected features in the encoder/decoder inputs (default=512).
  • nhead – the number of heads in the multiheadattention models (default=8).
  • num_encoder_layers – the number of sub-encoder-layers in the encoder (default=6).
  • num_decoder_layers – the number of sub-decoder-layers in the decoder (default=6).
  • dim_feedforward – the dimension of the feedforward network model (default=2048).
  • dropout – the dropout value (default=0.1).
  • activation – the activation function of encoder/decoder intermediate layer, relu or gelu (default=relu).
  • custom_encoder – custom encoder (default=None).
  • custom_decoder – custom decoder (default=None).
Examples:
transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
src = torch.rand(10, 32, 512)
tgt = torch.rand(20, 32, 512)
out = transformer_model(src, tgt)
print(out.size())

# Results:
torch.Size([20, 32, 512])

Note: A full example to apply nn.Transformer module for the word language model is available in https://github.com/pytorch/examples/tree/master/word_language_model

forward(src, tgt, src_mask=None, tgt_mask=None, memory_mask=None, src_key_padding_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None)

Take in and process masked source/target sequences.

Parameters:
  • src – the sequence to the encoder (required).
  • tgt – the sequence to the decoder (required).
  • src_mask – the additive mask for the src sequence (optional).
  • tgt_mask – the additive mask for the tgt sequence (optional).
  • memory_mask – the additive mask for the encoder output (optional).
  • src_key_padding_mask – the ByteTensor mask for src keys per batch (optional).
  • tgt_key_padding_mask – the ByteTensor mask for tgt keys per batch (optional).
  • memory_key_padding_mask – the ByteTensor mask for memory keys per batch (optional).
Shape:
  • src: (S, N, E).
  • tgt: (T, N, E).
  • src_mask: (S, S).
  • tgt_mask: (T, T).
  • memory_mask: (T, S).
  • src_key_padding_mask: (N, S).
  • tgt_key_padding_mask: (N, T).
  • memory_key_padding_mask: (N, S).

Note: [src/tgt/memory]_mask should be filled with float(‘-inf’) for the masked positions and float(0.0) else. These masks ensure that predictions for position i depend only on the unmasked positions j and are applied identically for each sequence in a batch. [src/tgt/memory]_key_padding_mask should be a ByteTensor where True values are positions that should be masked with float(‘-inf’) and False values will be unchanged. This mask ensures that no information will be taken from position i if it is masked, and has a separate mask for each sequence in a batch.

  • output: (T, N, E).

Note: Due to the multi-head attention architecture in the transformer model, the output sequence length of a transformer is same as the input sequence (i.e. target) length of the decode.

where S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number

Examples:
output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask)
generate_square_subsequent_mask(sz)

Generate a square mask for the sequence. The masked positions are filled with float(‘-inf’). Unmasked positions are filled with float(0.0).


SOURCE CODE


class Transformer(Module):
    def __init__(self, d_model=512, nhead=8, num_encoder_layers=6,
                 num_decoder_layers=6, dim_feedforward=2048, dropout=0.1,
                 activation="relu", custom_encoder=None, custom_decoder=None):
        super(Transformer, self).__init__()

        if custom_encoder is not None:
            self.encoder = custom_encoder
        else:
            encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout, activation)
            encoder_norm = LayerNorm(d_model)
            self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)

        if custom_decoder is not None:
            self.decoder = custom_decoder
        else:
            decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, activation)
            decoder_norm = LayerNorm(d_model)
            self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm)

        self._reset_parameters()

        self.d_model = d_model
        self.nhead = nhead

    def forward(self, src, tgt, src_mask=None, tgt_mask=None,
                memory_mask=None, src_key_padding_mask=None,
                tgt_key_padding_mask=None, memory_key_padding_mask=None):
        # type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor  # noqa
        if src.size(1) != tgt.size(1):
            raise RuntimeError("the batch number of src and tgt must be equal")

        if src.size(2) != self.d_model or tgt.size(2) != self.d_model:
            raise RuntimeError("the feature number of src and tgt must be equal to d_model")

        memory = self.encoder(src, mask=src_mask, src_key_padding_mask=src_key_padding_mask)
        output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=memory_mask,
                              tgt_key_padding_mask=tgt_key_padding_mask,
                              memory_key_padding_mask=memory_key_padding_mask)
        return output

    def generate_square_subsequent_mask(self, sz):
        r"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
 Unmasked positions are filled with float(0.0).
 """
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
        return mask

    def _reset_parameters(self):
        r"""Initiate parameters in the transformer model."""

        for p in self.parameters():
            if p.dim() > 1:
                xavier_uniform_(p)

ISSUES

  1. The generate_square_subsequent_mask function in nn.Transformer can only generate square masks, but memory_mask requires the dimension (T, S). I am wondering is there a built in function in transformer?? Thank you!
def _generate_subsequent_mask(tgt_sz, src_sz):
    mask = (torch.triu(torch.ones(src_sz, tgt_sz)) == 1).transpose(0, 1)
    print(mask)
    mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
    return mask

_generate_subsequent_mask(4, 5)

# Results:
tensor([[ True, False, False, False, False],
        [ True,  True, False, False, False],
        [ True,  True,  True, False, False],
        [ True,  True,  True,  True, False]])

tensor([[0., -inf, -inf, -inf, -inf],
        [0., 0., -inf, -inf, -inf],
        [0., 0., 0., -inf, -inf],
        [0., 0., 0., 0., -inf]])

Answer 1:You don’t need to use memory_mask unless you want to prevent the decoder from attending some tokens in the input sequence, and the original Transformer didn’t use it in the first place because the decoder should be aware of the entire input sequence for any token in the output sequence. The same thing can be said to the input sequence (i.e., src_mask.)

In the PyTorch language, the original Transformer settings are src_mask=None and memory_mask=None, and for tgt_mask=generate_square_subsequent_mask(T).

Again, memory_mask is used only when you don’t want to let the decoder attend certain tokens in the input sequence. That is why the input shape is (T, S) (where T is output sequence length and S is input sequence length.)

  1. How to add padding mask to nn.TransformerEncoder module? More
def _generate_key_padding_mask(include_length): # return (N,L)
    max_length = torch.max(include_length)
    mask = torch.stack([torch.arange(max_length)>=i for i in include_length])
    return mask
    
include_length = torch.tensor([6, 4, 3, 2])
_generate_key_padding_mask(include_length)

# Results:
tensor([[False, False, False, False, False, False],
        [False, False, False, False,  True,  True],
        [False, False, False,  True,  True,  True],
        [False, False,  True,  True,  True,  True]])
  1. How to turn a list of tensor to tensor?
def _generate_key_padding_mask(include_length): # return (N,L)
    max_length = torch.max(include_length)
    print([torch.arange(max_length)>=i for i in include_length])
    mask = torch.stack([torch.arange(max_length)>=i for i in include_length])
    return mask
    
include_length = torch.tensor([6, 4, 3, 2])
_generate_key_padding_mask(include_length)

# Results:
[tensor([False, False, False, False, False, False]), tensor([False, False, False, False,  True,  True]), tensor([False, False, False,  True,  True,  True]), tensor([False, False,  True,  True,  True,  True])]

tensor([[False, False, False, False, False, False],
        [False, False, False, False,  True,  True],
        [False, False, False,  True,  True,  True],
        [False, False,  True,  True,  True,  True]])
x = torch.tensor([[1, 2]])
print(torch.cat((x, x, x), 0))
print(torch.cat((x, x, x), 1))

# Results:
tensor([[1, 2],
        [1, 2],
        [1, 2]])
tensor([[1, 2, 1, 2, 1, 2]])

参考链接:
https://pytorch.org/docs/master/_modules/torch/nn/modules/transformer.html#TransformerEncoderLayer

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,589评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,615评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,933评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,976评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,999评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,775评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,474评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,359评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,854评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,007评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,146评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,826评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,484评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,029评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,153评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,420评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,107评论 2 356

推荐阅读更多精彩内容