import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# 去掉警告
import warnings
warnings.filterwarnings("ignore",".*GUI is implemented.*")
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
def add_layer(inputs, in_size, out_size, activation_function = None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) # 保证 biases 不为 0
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function == None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
x_data = np.linspace(-1, 1, 300) #(300,)
x_data = x_data.reshape(300,1) # (300, 1)
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
# 为 batch 做准备
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
l1 = add_layer(xs, 1, 10, activation_function = tf.nn.relu)
prediction = add_layer(l1, 10, 1, activation_function = None)
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), 1))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.global_variables_initializer()
# 画图
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion()
plt.show()
with tf.Session() as sess:
sess.run(init)
for step in range(1000):
sess.run(train_step, feed_dict = {xs: x_data, ys: y_data})
if step % 50 == 0:
#print('loss = ', sess.run(loss, feed_dict = {xs: x_data, ys: y_data}))
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value = sess.run(prediction, feed_dict = {xs:x_data})
lines = ax.plot(x_data, prediction_value, 'r-', lw = 5) # lw指线条宽度
plt.pause(0.1)
input() # 阻止图片闪退
小结
- plt.pause(0.1) 为图片显示增加动态效果,所以要运行代码哦!!!