Java运行时数据区
1、程序计数器:指向当前线程正在执行的字节码指令。线程私有的。
2、虚拟机栈:虚拟机栈是Java执行方法的内存模型。每个方法被执行的时候,都会创建一个栈帧,把栈帧压人栈,当方法正常返回或者抛出未捕获的异常时,栈帧就会出栈。
3、本地方法栈:(1)调用本地native的内存模型 (2)线程独享。
4、方法区:用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译后的代码等数据
(1)线程共享的 (2)运行时常量池:
5、堆(Heap):Java对象存储的地方 (1)Java堆是虚拟机管理的内存中最大的一块 (2)Java堆是所有线程共享的区域 (3)在虚拟机启动时创建 (4)此内存区域的唯一目的就是存放对象实例,几乎所有对象实例都在这里分配内存。存放new生成的对象和数组 (5)Java堆是垃圾收集器管理的内存区域,因此很多时候称为“GC堆”
JMM Java内存模型:
1、 Java的并发采用“共享内存”模型,线程之间通过读写内存的公共状态进行通讯。多个线程之间是不能通过直接传递数据交互的,它们之间交互只能通过共享变量实现。
2、 主要目的是定义程序中各个变量的访问规则。
3、 Java内存模型规定所有变量都存储在主内存中,每个线程还有自己的工作内存。
(1) 线程的工作内存中保存了被该线程使用到的变量的拷贝(从主内存中拷贝过来),线程对变量的所有操作都必须在工作内存中执行,而不能直接访问主内存中的变量。
(2) 不同线程之间无法直接访问对方工作内存的变量,线程间变量值的传递都要通过主内存来完成。
(3) 主内存主要对应Java堆中实例数据部分。工作内存对应于虚拟机栈中部分区域。
堆的内存划分:
Java堆的内存划分如图所示,分别为年轻代、Old Memory(老年代)、Perm(永久代)。其中在Jdk1.8中,永久代被移除,使用MetaSpace代替。
1、新生代:(1)使用复制清除算法(Copinng算法),原因是年轻代每次GC都要回收大部分对象。新生代里面分成一份较大的Eden空间和两份较小的Survivor空间。每次只使用Eden和其中一块Survivor空间,然后垃圾回收的时候,把存活对象放到未使用的Survivor(划分出from、to)空间中,清空Eden和刚才使用过的Survivor空间。(2)分为Eden、Survivor From、Survivor To,比例默认为8:1:1 (3)内存不足时发生Minor GC
GC垃圾回收:
一、 判断对象是否要回收的方法:
1、 可达性分析法:通过一系列“GC Roots”对象作为起点进行搜索,如果在“GC Roots”和一个对象之间没有可达路径,则称该对象是不可达的。
2、 以下对象会被认为是root对象:(1) 虚拟机栈(栈帧中本地变量表)中引用的对象 (2) 方法区中静态属性引用的对象 (3) 方法区中常量引用的对象 (4) 本地方法栈中Native方法引用的对象
3、 对象被判定可被回收,需要经历两个阶段:(1) 第一个阶段是可达性分析,分析该对象是否可达 (2) 第二个阶段是当对象没有重写finalize()方法或者finalize()方法已经被调用过,虚拟机认为该对象不可以被救活,因此回收该对象。(finalize()方法在垃圾回收中的作用是,给该对象一次救活的机会)
4、 方法区中的垃圾回收:(1) 常量池中一些常量、符号引用没有被引用,则会被清理出常量池 (2) 无用的类:被判定为无用的类,会被清理出方法区。判定方法如下:A、 该类的所有实例被回收 B、 加载该类的ClassLoader被回收 C、 该类的Class对象没有被引用 5、 finalize(): (1) GC垃圾回收要回收一个对象的时候,调用该对象的finalize()方法。然后在下一次垃圾回收的时候,才去回收这个对象的内存。(2) 可以在该方法里面,指定一些对象在释放前必须执行的操作。
二、 发现虚拟机频繁full GC时应该怎么办:(full GC指的是清理整个堆空间,包括年轻代和永久代) (1) 首先用命令查看触发GC的原因是什么 jstat –gccause 进程id (2) 如果是System.gc(),则看下代码哪里调用了这个方法 (3) 如果是heap inspection(内存检查),可能是哪里执行jmap –histo[:live]命令 (4) 如果是GC locker,可能是程序依赖的JNI库的原因
三、常见的垃圾回收算法:1、Mark-Sweep(标记-清除算法):(1)思想:标记清除算法分为两个阶段,标记阶段和清除阶段。标记阶段任务是标记出所有需要回收的对象,清除阶段就是清除被标记对象的空间。(2)优缺点:实现简单,容易产生内存碎片 2、Copying(复制清除算法):(1)思想:将可用内存划分为大小相等的两块,每次只使用其中的一块。当进行垃圾回收的时候了,把其中存活对象全部复制到另外一块中,然后把已使用的内存空间一次清空掉。(2)优缺点:不容易产生内存碎片;可用内存空间少;存活对象多的话,效率低下。3、Mark-Compact(标记-整理算法):(1)思想:先标记存活对象,然后把存活对象向一边移动,然后清理掉端边界以外的内存。(2)优缺点:不容易产生内存碎片;内存利用率高;存活对象多并且分散的时候,移动次数多,效率低下
4、分代收集算法:(目前大部分JVM的垃圾收集器所采用的算法):
思想:把堆分成新生代和老年代。(永久代指的是方法区)
(1) 因为新生代每次垃圾回收都要回收大部分对象,所以新生代采用Copying算法。新生代里面分成一份较大的Eden空间和两份较小的Survivor空间。每次只使用Eden和其中一块Survivor空间,然后垃圾回收的时候,把存活对象放到未使用的Survivor(划分出from、to)空间中,清空Eden和刚才使用过的Survivor空间。(2) 由于老年代每次只回收少量的对象,因此采用mark-compact算法。(3) 在堆区外有一个永久代。对永久代的回收主要是无效的类和常量 5、GC使用时对程序的影响?垃圾回收会影响程序的性能,Java虚拟机必须要追踪运行程序中的有用对象,然后释放没用对象,这个过程消耗处理器时间 6、几种不同的垃圾回收类型:(1)Minor GC:从年轻代(包括Eden、Survivor区)回收内存。
A、当JVM无法为一个新的对象分配内存的时候,越容易触发Minor GC。所以分配率越高,内存越来越少,越频繁执行Minor GCB、执行Minor GC操作的时候,不会影响到永久代(Tenured)。从永久代到年轻代的引用,被当成GC Roots,从年轻代到老年代的引用在标记阶段直接被忽略掉。
(2)Major GC:清理整个老年代,当eden区内存不足时触发。(3)Full GC:清理整个堆空间,包括年轻代和老年代。当老年代内存不足时触发
JVM优化:
1、一般来说,当survivor区不够大或者占用量达到50%,就会把一些对象放到老年区。通过设置合理的eden区,survivor区及使用率,可以将年轻对象保存在年轻代,从而避免full GC,使用-Xmn
设置年轻代的大小
2、对于占用内存比较多的大对象,一般会选择在老年代分配内存。如果在年轻代给大对象分配内存,年轻代内存不够了,就要在eden区移动大量对象到老年代,然后这些移动的对象可能很快消亡,因此导致full GC。通过设置参数:-XX:PetenureSizeThreshold=1000000
,单位为B,标明对象大小超过1M时,在老年代(tenured)分配内存空间。
3、一般情况下,年轻对象放在eden区,当第一次GC后,如果对象还存活,放到survivor区,此后,每GC一次,年龄增加1,当对象的年龄达到阈值,就被放到tenured老年区。这个阈值可以同构-XX:MaxTenuringThreshold
设置。如果想让对象留在年轻代,可以设置比较大的阈值。
4、设置最小堆和最大堆:-Xmx
和-Xms
稳定的堆大小堆垃圾回收是有利的,获得一个稳定的堆大小的方法是设置-Xms和-Xmx的值一样,即最大堆和最小堆一样,如果这样子设置,系统在运行时堆大小理论上是恒定的,稳定的堆空间可以减少GC次数,因此,很多服务端都会将这两个参数设置为一样的数值。稳定的堆大小虽然减少GC次数,但是增加每次GC的时间,因为每次GC要把堆的大小维持在一个区间内。
5、一个不稳定的堆并非毫无用处。在系统不需要使用大内存的时候,压缩堆空间,使得GC每次应对一个较小的堆空间,加快单次GC次数。基于这种考虑,JVM提供两个参数,用于压缩和扩展堆空间。(1)-XX:MinHeapFreeRatio
参数用于设置堆空间的最小空闲比率。默认值是40,当堆空间的空闲内存比率小于40,JVM便会扩展堆空间 (2)-XX:MaxHeapFreeRatio
参数用于设置堆空间的最大空闲比率。默认值是70, 当堆空间的空闲内存比率大于70,JVM便会压缩堆空间。(3)当-Xmx和-Xmx相等时,上面两个参数无效
6、通过增大吞吐量提高系统性能,可以通过设置并行垃圾回收收集器。(1)-XX:+UseParallelGC
:年轻代使用并行垃圾回收收集器。这是一个关注吞吐量的收集器,可以尽可能的减少垃圾回收时间。(2)-XX:+UseParallelOldGC
:设置老年代使用并行垃圾回收收集器。
7、尝试使用大的内存分页:使用大的内存分页增加CPU的内存寻址能力,从而系统的性能。-XX:+LargePageSizeInBytes
设置内存页的大小
8、使用非占用的垃圾收集器。-XX:+UseConcMarkSweepGC
老年代使用CMS收集器降低停顿。
9、-XXSurvivorRatio=3
,表示年轻代中的分配比率:survivor:eden = 2:3
10、JVM性能调优的工具:(1)jps(Java Process Status):输出JVM中运行的进程状态信息(现在一般使用jconsole) (2)jstack:查看java进程内线程的堆栈信息。(3)jmap:用于生成堆转存快照 (4)jhat:用于分析jmap生成的堆转存快照(一般不推荐使用,而是使用Ecplise Memory Analyzer) (3)jstat是JVM统计监测工具。可以用来显示垃圾回收信息、类加载信息、新生代统计信息等。(4)VisualVM:故障处理工具
类加载机制:
一、 概念:类加载器把class文件中的二进制数据读入到内存中,存放在方法区,然后在堆区创建一个java.lang.Class对象,用来封装类在方法区内的数据结构。类加载的步骤如下:1、加载:查找并加载类的二进制数据(把class文件里面的信息加载到内存里面) 2、连接:把内存中类的二进制数据合并到虚拟机的运行时环境中 (1)验证:确保被加载的类的正确性。包括:
A、类文件的结构检查:检查是否满足Java类文件的固定格式 B、语义检查:确保类本身符合Java的语法规范 C、字节码验证:确保字节码流可以被Java虚拟机安全的执行。字节码流是操作码组成的序列。每一个操作码后面都会跟着一个或者多个操作数。字节码检查这个步骤会检查每一个操作码是否合法。 D、二进制兼容性验证:确保相互引用的类之间是协调一致的。
(2)准备:为类的静态变量分配内存,并将其初始化为默认值 (3)解析:把类中的符号引用转化为直接引用(比如说方法的符号引用,是有方法名和相关描述符组成,在解析阶段,JVM把符号引用替换成一个指针,这个指针就是直接引用,它指向该类的该方法在方法区中的内存位置) 3、初始化:为类的静态变量赋予正确的初始值。当静态变量的等号右边的值是一个常量表达式时,不会调用static代码块进行初始化。只有等号右边的值是一个运行时运算出来的值,才会调用static初始化。
二、双亲委派模型:1、当一个类加载器收到类加载请求的时候,它首先不会自己去加载这个类的信息,而是把该 请求转发给父类加载器,依次向上。所以所有的类加载请求都会被传递到父类加载器中,只有当父类加载器中无法加载到所需的类,子类加载器才会自己尝试去加载该类。当当前类加载器和所有父类加载器都无法加载该类时,抛出ClassNotFindException异常。2、意义:
提高系统的安全性。用户自定义的类加载器不可能加载应该由父加载器加载的可靠类。(比如用户定义了一个恶意代码,自定义的类加载器首先让系统加载器去加载,系统加载器检查该代码不符合规范,于是就不继续加载了)