EL_task3task4task5

方差与偏差

方差表示,不同采样下预测结果的摆动情况

偏差表示,预测值对真实值的接近程度

模型约复杂,偏差越小方差越大­­­­­­­­

­­­­­

训练误差修正

基于训练误差 获得较好的预测误差

考虑兼顾方差和偏差的评价方式, 不单单以残差为唯一标准,同时引入模型的特征数量作为惩罚项

进一步:AIC 和BIC 的对比https://zhuanlan.zhihu.com/p/142489599

AIC

Kl距离:“tSNE”中有所涉及, aic中对kl距离用log似然函数来表示。


BIC­­­

相对AIC增大了对模型特征数的惩罚

­­

交叉验证

前面讨论的对训练误差修正得到测试误差的估计是间接方法,这种方法的桥梁是训练误差,而交叉验证则是对测试误差的直接估计。交叉验证比训练误差修正的优势在于:能够给出测试误差的一个直接估计,

共线性来源:

1 数据采集: 采样方式导致只采集了独立变量的一个小的子集

2 外部限制: 物理政治法律

3 模型的过度定义: 变量多于观测值

4 数据重构: 如果采样子集过小,那任何形式的指数或交叉项组合都会增加共线性

5 离群点主导:

识别共线性:

1 成对散点图明显趋势

2 相关性矩阵中的高相关性

3 方差膨胀系数VIF 越高表示共线性系数

4 相关性矩阵的特征值接近0表示共线性,使用条件数,大的条件数表征共线性

5 对比拟合系数的符号,多元与一元拟合符号相反

修正共线性方法:

外部方法:

1 增量增广 提高采样的数量和质量Ifthe multicollinearity has been created by the data collection, collectadditional data over a widerX-subspace.

2 简化模型If the choice of the linear model has increased themulticollinearity, simplify the model by using variable selection techniques.

3 剔除异常观测值If an observation or two has induced themulticollinearity, remove those observations.

内部方法:

1 岭回归

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,258评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,335评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,225评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,126评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,140评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,098评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,018评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,857评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,298评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,518评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,400评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,993评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,638评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,661评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容