分布式数据库中间件DDM的实现原理

随着数据量不断增大,传统的架构模式难以解决业务量不断增长所带来的问题,特别是在业务成线性、甚至指数级上升的情况。此时我们不得不通过水平扩展,把数据库放到不同服务器上来解决问题,也就是我们说的数据库中间件。


作为数据库中间件,分布式数据库中间件DDM将底层数据库存储引擎以集群方式管理起来,用户使用非常方便。应用程序不需要关心具体有多少分片。类似操作单机数据库,用户通过DDM管理控制台进行数据库运维,使用JDBC等驱动服务或SQL客户端连接数据库,进行数据读写。

DDM服务的业务架构图示


分片是解决数据库存储容量限制的直接途径。分片包括垂直分片与水平分片两种方式。

垂直分片

垂直分片又叫纵向分割,即以逻辑表为单位,把原有数据库切分成多个数据库。切分后不同的表存储在不同的数据库上。

垂直分片与业务架构设计有密切的联系。比如从业务领域对系统进行架构优化,分成多个子业务系统,各个子业务系统耦合度较低。子业务系统间以接口方式进行数据通信和数据交换。垂直拆分后业务清晰,拆分规则明确,系统之间容易整合与扩展。一般用于数据库上层架构设计。

垂直分片示意图

水平分片

水平分片又叫横向分割,即以逻辑表中的数据行记录为单位,把原有逻辑数据库切分成多个物理数据库分片,表数据记录分布存储在各个分片上。

水平分片主要用业务架构无法继续细分,而数据库中单张表数据量太大,查询性能下降的场景。通过水平分片,即解决单库容量问题,同时提高并发查询性能。

水平分片示意图


DDM实现了自动水平分片,应用无需关心某个数据该存储在哪一块分片上。对逻辑表水平分片需要依据一定的分片规则,例如一个订单跟踪系统(见上图),我们选取订单号(OrderId)作为拆分键,分别对“订单流水表”、“订单详情表”以及“物流跟踪表”进行水平拆分,拆分规则为对键值Hash后求模,则分片计算规则如下:

H(Key(OrderId)) = Hash(Key(OrderId))%N

其中,N表示一共有N个数据分片,H(Key(OrderId))表示该订单经过订单号Hash并求模后存储的分片编号。

分片后数据存储示意图

路由分

路由分发与水平分片同为DDM的基础功能。在分布式数据库中,路由的作用即将SQL语句进行解析,并转发到正确的分片上,保证SQL执行后得到正确的结果,并且节约QPS资源。例如:订单支付系统包含了shard0、shard1、shard2三个分片,订单号2017010112345678的订单数据存储在shard0分片上,则应该将以下语句路由分发到shard0分片上执行。

select Customer, OrderStatus, CreateDate from Order

where OrderId = '2017010112345678';

如果同时路由到shard0、shard1、shard2三个分片,会造成多余的查询,浪费资源;如果路由到shard1、shard2分片,则得不到正确的返回结果。

DDM对单张表的路由解析流程如下:

单张表的路由解析流程

读写分离

数据库中对计算和缓存资源消耗较多的往往是密集或复杂的SQL查询。当系统资源被查询语句消耗,反过来会影响数据写入操作,进而导致数据库整体性能下降,响应缓慢。因此,当数据库CPU和内存资源占用居高不下,且读写比例较高时,可以为数据库添加只读实例。

添加只读实例的作用有以下:

1、将查询非事务性查询SQL路由到只读实例中执行,主实例上执行事务性SQL,在很大程度上缓解主实例上的S锁与X锁的竞争。

2、对只读实例上的表可配置不提供事务支持的数据库引擎,进而提升查询效率。

3、增加只读实例,也相当于数据库横向扩展,直接增加负载能力,同时增加数据冗余,确保数据库高可用。

DDM服务实现了自动读写分离,用户购买了RDS只读实例后,将只读实例信息同步到DDM中即可,无需再做其他配置。同时,DDM支持用户在SQL中自定义读写分离策略,具体用法请参考如何实现读写分离

读写分离示意图

平滑扩容

随着业务增长,逻辑库存储空间不足,并发压力较大,此时可对DDM实例逻辑库进行平滑扩容,通过增加RDS实例来提高数据存储能力与并发支持能力。

平滑扩容是一种水平扩容方式,通过增加RDS实例的数量来提升总体数据存储容量,把分库平滑扩容到新增加的RDS实例上,保证所有的数据都是均衡分布在每个分库上,降单个RDS实例的处理压力。平滑扩容原理如下图所示。

平滑扩容原理


以上就是对分布式数据库中间件DDM实现原理的浅析,目前华为云DDM推出了免费体验活动,想要了解更多,欢迎前往分布式数据库中间件查看。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,406评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,732评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,711评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,380评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,432评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,301评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,145评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,008评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,443评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,649评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,795评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,501评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,119评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,731评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,865评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,899评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,724评论 2 354

推荐阅读更多精彩内容

  • 进入云计算时代,传统的数据库在性能和容量等方面已无法满足企业的要求,随着数据量的不断骤增,易于扩展、拆分的数据库解...
    中间件小哥阅读 1,438评论 0 2
  • 微信版的链接地址 文章摘要:当单表数据达到千万以上时,通过加索引或者表分区优化提升的效果就比较有限了,应该如何应对...
    癫狂侠阅读 1,817评论 0 13
  • 需要原文的可以留下邮箱我给你发,这里的文章少了很多图,懒得网上粘啦 1数据库基础 1.1数据库定义 1)数据库(D...
    极简纯粹_阅读 7,423评论 0 46
  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,654评论 18 139
  • (1)、父级div定义 height原理:父级div手动定义height,就解决了父级div无法自动获取到高度的问...
    苹果咏阅读 231评论 0 0