编程入门19:Python任务调度

上一篇:编程入门18:Python生产环境

我们知道现今的操作系统都支持“多任务”(Multitasking),虽然计算机的中央处理器(CPU)在同一时刻只能运行一个程序(双核心的话就是两个),但是由于CPU的速度极快,每秒能执行几十亿条机器语言指令,因此系统可以划分出微秒级的时间片,通过合理的任务调度快速切换执行程序,从人类的角度看就是在同时运行了。

对于操作系统来说,任务调度和资源分配的基本单元是“进程”(Process),不同程序在不同进程中运行。同一程序也可能会启动多个进程以高效地执行多任务,例如浏览器同时下载多个在线资源,IDE一边接受代码输入一边调用解释器检查语法等等——任务切换时需要记住各自进行到了哪一步,这种信息就称为“上下文”(Context)。在Windows系统中右击任务栏选择“任务管理器”即可显示当前进程列表,你会发现即使未打开任何应用,也有上百个进程正在后台运行。


19_proc.png

之前我们编写的代码都是单路运行的,例如以下程序依次执行了两个工作任务:

"""xwork_1.py 主程序依次执行多个任务
"""
import time


def work(tasknum):
    t1 = time.perf_counter()
    print(f"任务{tasknum}开始……")
    time.sleep(3)
    print(f"任务{tasknum}完成!耗时{time.perf_counter() - t1}秒。")


def main():
    work(1)
    work(2)


if __name__ == "__main__":
    t1 = time.perf_counter()
    main()
    print(f"主程序耗时{time.perf_counter() - t1}秒。")

任务函数work()用time.sleep()模拟耗时3秒的操作,这样依次执行两个任务的总耗时就是6秒:

PS D:\Test\pyStudy> python -u "d:\Test\pyStudy\basic\xwork_1.py"
任务1开始……
任务1完成!耗时3.0185625689999998秒。
任务2开始……
任务2完成!耗时3.0008498049999996秒。
主程序耗时6.020425788秒。

多个耗时操作如果彼此没有关联,就可以通过“并发”(Concurrent)来避免无谓的等待。下面就让我们尝试编写并发执行多个任务的程序——Python标准库提供了multiprocessing模块来实现多进程,你可以调用进程类构造器multiprocessing.Process()创建进程实例,再调用实例的start()方法启动之,这样任务就能在不同进程中并发执行了:

"""xwork_2.py 多个进程并发执行多个任务
"""
import time
import multiprocessing


def work(tasknum):
    t1 = time.perf_counter()
    print(f"任务{tasknum}开始……")
    time.sleep(3)
    print(f"任务{tasknum}完成!耗时{time.perf_counter() - t1}秒。")


def main():
    multiprocessing.Process(target=work, args=(1,)).start()
    multiprocessing.Process(target=work, args=(2,)).start()


if __name__ == "__main__":
    t1 = time.perf_counter()
    main()
    print(f"主程序耗时{time.perf_counter() - t1}秒。")

以上程序用两个进程并发执行两个任务,在3秒之后同时完成,而在默认进程中执行的主程序因为没有耗时操作所以率先结束了(如果你希望等其它进程都完成再退出主程序,可以在进程启动后再调用实例的join()方法):

PS D:\Test\pyStudy> python -u "d:\Test\pyStudy\basic\xwork_2.py"
主程序耗时0.06413474699999999秒。
任务1开始……
任务2开始……
任务1完成!耗时2.993581393秒。
任务2完成!耗时2.993595187秒。

在单个进程内部也可以同时运行多个子任务,称为“线程”(Thread),线程相比进程更为轻量,建立和释放速度更快——通常耗时操作可分为两种:例如密码破解需要CPU进行大量运算,这称为CPU密集型应用;而网络爬虫主要处理数据的输入和输出(Input/Output),这称为IO密集型应用。前者宜采用多进程,后者则宜采用多线程。使用线程要引入标准库的threading模块,具体写法与使用进程类似:

"""xwork_3.py 多个线程并发执行多个任务
"""
import time
import threading
import sys


def work(tasknum):
    t1 = time.perf_counter()
    sys.stdout.write(f"任务{tasknum}开始……\n")
    time.sleep(3)
    sys.stdout.write(f"任务{tasknum}完成!耗时{time.perf_counter() - t1}秒。\n")


def main():
    threading.Thread(target=work, args=(1,)).start()
    threading.Thread(target=work, args=(2,)).start()


if __name__ == "__main__":
    t1 = time.perf_counter()
    main()
    print(f"主程序耗时{time.perf_counter() - t1}秒。")

使用多线程要注意所谓“线程安全”问题——例如当多个线程都想用print()输出信息时,可能会因为没有抢到资源而出现异常。因此以上程序的工作函数输出信息用的是线程安全的sys.stdout.write(),运行结果如下:

PS D:\Test\pyStudy> python -u "d:\Test\pyStudy\basic\xwork_3.py"
任务1开始……
任务2开始……
主程序耗时0.0009290429999999975秒。
任务2完成!耗时3.008762067秒。
任务1完成!耗时3.0092474399999998秒。

Python 3.4新增了一种更适合IO密集型应用的特性“异步IO”(Asynchronous I/O),在不开多进程或多线程的情况下也能实现多任务并发。简单来说,当程序发起一个普通IO操作时,它会“阻塞”(Block)当前任务的执行直到操作结束,而所谓异步IO就是不等待IO操作结束就继续执行,这需要创建一个内部事件循环来轮番处理所有任务的状态。异步IO调度任务的基本单元称为“协程”(Coroutine)——函数之类的程序构件可统称为子程序或“例程”(Routine),一般都是从起点进入从终点退出;而协程是一种特殊例程,在进入后可以多次中断转往其他操作再返回(其实就是之前介绍过的生成器),这样就能有任意多个任务在事件循环中被切换执行了。

通过异步IO实现多任务并发需要引入标准库的asyncio模块并使用async/await语句:

  1. async def 定义协程函数用来返回协程对象/async with 指定异步上下文管理器用来生成可等待对象
  2. asyncio.create_task()/.gather() 将一个/多个协程打包为任务排入计划日程
  3. await 指定任务或其他可等待对象等待其完成并返回执行结果
  4. 在主程序中获取事件循环来运行作为顶层入口的协程函数

具体写法如下所示:

"""xwork_4.py 多个协程并发执行多个任务
"""
import time
import asyncio


async def work(tasknum):
    t1 = time.perf_counter()
    print(f"任务{tasknum}开始……")
    await asyncio.sleep(3)
    print(f"任务{tasknum}完成!耗时{time.perf_counter() - t1}秒。")


async def main():
    tasks = asyncio.gather(work(1), work(2))
    await tasks


if __name__ == "__main__":
    t1 = time.perf_counter()
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())
    # 在Spyder中用下面这句才行,因为IPyhon已启动事件循环
    # asyncio.run_coroutine_threadsafe(main(), loop)
    # 在Python 3.7中用下面这句即可,不必再去获取事件循环
    # asyncio.run(main())
    print(f"主程序耗时{time.perf_counter() - t1}秒。")

请注意协程版work()要用asyncio.sleep()来模拟异步IO耗时操作,因为time.sleep()会阻塞事件循环。程序运行结果如下:

PS D:\Test\pyStudy> python -u "d:\Test\pyStudy\basic\xwork_4.py"
任务1开始……
任务2开始……
任务1完成!耗时3.0036561820000003秒。
任务2完成!耗时3.0038537950000004秒。
主程序耗时3.019819151秒。

下面的示例是之前百度图片爬虫的协程版,程序比原来复杂一点但性能提升了许多倍——请注意urllib.request同样也是阻塞式的,所以要改用基于异步IO的第三方包aiohttp:

"""xwork_webcrawler.py 协程版百度图片搜索并批量下载
"""
import asyncio
import aiohttp
from urllib.parse import quote
import os
import re
import time
url = "https://image.baidu.com/search/flip?tn=baiduimage&word="
keyword = "CG原画"
folder = "img"
path = os.path.abspath(".")
headers = {
    'User-Agent':
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:61.0) \
            Gecko/20100101 Firefox/61.0'
}


async def fetch(session, url):
    async with session.get(url, timeout=20) as res:
        return await res.text()


async def store(session, url):
    t1 = time.perf_counter()
    async with session.get(url, timeout=20) as res:
        with open(os.path.join(path, folder, url.split("/")[-1]), "wb") as f:
            while True:
                chunk = await res.content.read(512)
                if not chunk:
                    break
                f.write(chunk)
    print(f"保存图片{url}耗时{time.perf_counter() - t1}秒。")


async def main():
    if not os.path.exists(folder):
        os.mkdir(folder)
    async with aiohttp.ClientSession(headers=headers) as session:
        t1 = time.perf_counter()
        html = await fetch(session, url + quote(keyword))
        links = re.findall(r'"objURL":"(.+?)"', html)
        print(f"提取文本耗时{time.perf_counter() - t1}秒。")
        for i in links:
            await asyncio.create_task(store(session, i))


if __name__ == "__main__":
    t1 = time.perf_counter()
    try:
        loop = asyncio.get_event_loop()
        loop.run_until_complete(main())
    except Exception as e:
        print(repr(e))
    print(f"主程序耗时{time.perf_counter() - t1}秒。")

你还可以尝试配合使用协程和进程,在发挥异步IO执行效率的同时充分利用CPU的多个核心。

——编程原来是这样……

编程小提示:源码管理

当你学到这里,可以算是完全入门了,但在开始实际编程之前,你还应当了解“源码管理”(Source Code Management,简称SCM)或者叫“版本管理”因为它适用于任何需要保留修改记录的项目——最流行的源码管理工具是Git,官网下载页 https://git-scm.com/downloads

要学习Git直接看官方文档就好,有中文版 https://git-scm.com/book/zh/v2

你还可以加装一个图形界面的外壳,这样就无需记住Git命令:

许多网站提供免费Git服务,最大的一家是GitHub(https://github.com/),用国内的站点例如“码云”(https://gitee.com/)网速会快些——本教程的源码就放在这里,使用以下Git命令即可克隆到本机:

git clone https://gitee.com/freesand/pyStudy.git

如果你用VSCode,推荐安装这个插件GitLens:


19_scm.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容

  • 必备的理论基础 1.操作系统作用: 隐藏丑陋复杂的硬件接口,提供良好的抽象接口。 管理调度进程,并将多个进程对硬件...
    drfung阅读 3,530评论 0 5
  • 本文是我自己在秋招复习时的读书笔记,整理的知识点,也是为了防止忘记,尊重劳动成果,转载注明出处哦!如果你也喜欢,那...
    波波波先森阅读 11,244评论 4 56
  • 一. 操作系统概念 操作系统位于底层硬件与应用软件之间的一层.工作方式: 向下管理硬件,向上提供接口.操作系统进行...
    月亮是我踢弯得阅读 5,959评论 3 28
  • 1. 基础知识 1.1、 基本概念、 功能 冯诺伊曼体系结构1、计算机处理的数据和指令一律用二进制数表示2、顺序执...
    yunpiao阅读 5,269评论 1 22
  • 女儿因睡眠不好,我也(因心脏不舒服)想静静出去散散心,离开喧闹烦闷的城市,去人烟稀少贴近自然的乡村或者去森林氧吧里...
    山的孩子阅读 1,024评论 2 6