310. 最小高度树

对于一个具有树特征的无向图,我们可选择任何一个节点作为根。图因此可以成为树,在所有可能的树中,具有最小高度的树被称为最小高度树。给出这样的一个图,写出一个函数找到所有的最小高度树并返回他们的根节点。

格式

该图包含 n 个节点,标记为 0 到 n - 1。给定数字 n 和一个无向边 edges 列表(每一个边都是一对标签)。

你可以假设没有重复的边会出现在 edges 中。由于所有的边都是无向边, [0, 1]和 [1, 0] 是相同的,因此不会同时出现在 edges 里。

示例 1:

输入: n = 4, edges = [[1, 0], [1, 2], [1, 3]]

    0
    |
    1
   / \
  2   3 

输出: [1]
示例 2:

输入: n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

 0  1  2
  \ | /
    3
    |
    4
    |
    5 

输出: [3, 4]
说明:

根据树的定义,树是一个无向图,其中任何两个顶点只通过一条路径连接。 换句话说,一个任何没有简单环路的连通图都是一棵树。
树的高度是指根节点和叶子节点之间最长向下路径上边的数量。

本题其实有几个难点,一个是要发现规律,一个是要规律变为代码。
直观上想我们可以用暴力,每个节点都作为根节点来进行一次遍历,然后计算层数取最小值,这样的话定然会超时。
我们就要换种思路,首先发现规律,规律就是,其实这个根节点我们取的是要靠近中间,尽量靠中间的就会是答案。而不是根据节点的邻接点个数来判断。
那如何求出靠中间的呢?我们可以用和https://www.jianshu.com/p/0bb3f89adc82
一样的方法。我们每次都去除掉一个节点为1的节点,留到最后的就是最中心的节点了,如果出现第二张图的结构,就是两个节点都可以取,如果最后只剩下一个,那就是答案。
因此代码与https://www.jianshu.com/p/0bb3f89adc82
也是一致的。
但是总的来说两个难点是需要练习的。
代码如下:

class Solution {
    public List<Integer> findMinHeightTrees(int n, int[][] edges) {
        
        int [] degrees = new int[n];
        int len = edges.length;
        List<List<Integer>> adj = new ArrayList<>();
        for (int i = 0; i < n; i++){
            adj.add(new ArrayList<>());
        }
        for (int i = 0; i < len; i++){
            degrees[edges[i][0]]++;
            degrees[edges[i][1]]++;
            adj.get(edges[i][0]).add(edges[i][1]);
            adj.get(edges[i][1]).add(edges[i][0]);
        }
        Queue<Integer> queue = new ArrayDeque<>();
        for (int i = 0; i < n; i++){
            if (degrees[i] == 1){
                queue.add(i);
            }
        }
        
        while (n > 2){
            int size = queue.size();
            n -= size;
            for (int i = 0; i < size; i++){
                int j = queue.poll();
                for (int m = 0; m < adj.get(j).size();m++){
                    degrees[adj.get(j).get(m)]--;
                }
                degrees[j] = -1;
            }
            for (int i = 0; i < degrees.length; i++){
                if (degrees[i] == 1){
                    queue.add(i);
                }
            }
        }
        List<Integer> ans = new ArrayList<>();
        for (int i = 0; i < degrees.length; i++){
            if (degrees[i] >= 0)
                ans.add(i);
        }
        return ans;

     
    }
}

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-height-trees
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352