Flume 1.9.0 源码解析 : TailDirSource 全解flume taildir详解张伯毅的博客-CSDN博客
启动流程
1、从程序启动入口(org.apache.flume.node.Application 的main方法)开始
- 解析命令行参数
- 配置文件指定方式分为从zookeeper获取(-z)和直接读取文件(-f)两种,比如上面的就是直接读取配置文件
// Zookeeper方式,需要传递zookeeper集群的endpoint和基础路径,flume会组合基础路径和agent名称获取该agent的配置文件
StaticZooKeeperConfigurationProvider zookeeperConfigurationProvider =
new StaticZooKeeperConfigurationProvider(
agentName, zkConnectionStr, baseZkPath);
application = new Application();
application.handleConfigurationEvent(zookeeperConfigurationProvider.getConfiguration());
// 读文件方式
PropertiesFileConfigurationProvider configurationProvider =
new PropertiesFileConfigurationProvider(agentName, configurationFile);
application = new Application();
application.handleConfigurationEvent(configurationProvider.getConfiguration());
- 配置热加载
flume启动时支持两种配置加载方式:
- 配置信息可以通过文件或 ZooKeeper 的方式进行读取,两种方式都支持热加载,即我们不需要重启 Agent 就可以更新配置内容:
- 基于文件的配置热加载是通过一个后台线程对文件进行轮询实现的;
- 基于 ZooKeeper 的热加载则是使用了 Curator 的 NodeCache 模式,底层是 ZooKeeper 原生的监听(Watch)特性。
- 如果配置热更新是开启的(默认开启),配置提供方 ConfigurationProvider 就会将自身注册到 Agent 程序的组件列表中,并在 Application#start 方法调用后,由 LifecycleSupervisor 类进行启动和管理,加载和解析配置文件,从中读取组件列表。
- 如果热更新未开启,则配置提供方将在启动时立刻读取配置文件,并由 LifecycleSupervisor 启动和管理所有组件。
以文件方式热加载配置:
if (reload) {
EventBus eventBus = new EventBus(agentName + "-event-bus");
PollingPropertiesFileConfigurationProvider configurationProvider =
new PollingPropertiesFileConfigurationProvider(agentName, configurationFile, eventBus, 30);
components.add(configurationProvider);
application = new Application(components);
eventBus.register(application);
}
PollingPropertiesFileConfigurationProvider会定期加载配置文件,当文件内容更新时,它会将配置内容解析成 MaterializedConfiguration 实例,这个对象实例中包含了Source、Sink、Channel组件的所有信息。随后,这个轮询线程会通过 Guava 的 EventBus 机制通知 Application 类配置发生了更新,从而触发 Application#handleConfigurationEvent 方法,重新加载所有的组件。
- 配置文件默认支持热加载,即不用重启flume agent就能自动感知配置文件的变化。使用zookeeper的方式使用了Curator ,底层基于zookeeper原生的监听机制,使用配置文件的方式则是通过后台线程轮询
// zookeeper方式
agentNodeCache = new NodeCache(client, basePath + "/" + getAgentName());
agentNodeCache.start();
agentNodeCache.getListenable().addListener(new NodeCacheListener() {
@Override
public void nodeChanged() throws Exception {
refreshConfiguration();
}
});
private void refreshConfiguration() throws IOException {
LOGGER.info("Refreshing configuration from ZooKeeper");
byte[] data = null;
ChildData childData = agentNodeCache.getCurrentData();
if (childData != null) {
data = childData.getData();
}
// 将最新的配置保存在成员变量中,下一次获取flume配置直接返回该成员变量
flumeConfiguration = configFromBytes(data);
eventBus.post(getConfiguration());
}
// 配置文件方式
public class PollingPropertiesFileConfigurationProvider
extends PropertiesFileConfigurationProvider
implements LifecycleAware {
@Override
public void start() {
executorService = Executors.newSingleThreadScheduledExecutor(
new ThreadFactoryBuilder().setNameFormat("conf-file-poller-%d")
.build());
// FileWatcherRunnable 是 PollingPropertiesFileConfigurationProvider 的一个内部类
FileWatcherRunnable fileWatcherRunnable =
new FileWatcherRunnable(file, counterGroup);
// 启动一个线程每隔30秒检查一次,如果发现文件修改时间和记录的值不一样,则重新获取一次配置
executorService.scheduleWithFixedDelay(fileWatcherRunnable, 0, interval,
TimeUnit.SECONDS);
}
}
- 重新加载的配置文件如何自动生效?这个挺有意思的
- 在org.apache.flume.node.Application 文件中定义有如下方法,注意上面有 Subscribe 注解。其实该方法就是flume对配置变更这一事件的handler。具体逻辑就是先停掉所有的components然后再使用最新的配置文件启动所有的components
@Subscribe
public void handleConfigurationEvent(MaterializedConfiguration conf) {
try {
lifecycleLock.lockInterruptibly();
stopAllComponents();
startAllComponents(conf);
} catch (InterruptedException e) {
logger.info("Interrupted while trying to handle configuration event");
return;
} finally {
// If interrupted while trying to lock, we don't own the lock, so must not attempt to unlock
if (lifecycleLock.isHeldByCurrentThread()) {
lifecycleLock.unlock();
}
}
}
- 那如何触发这一事件呢?或者说配置变更的时候如何调用这个函数呢?此处用到了guava中的EventBus
- 首先显式调用eventbus的register方法将application进行注册,注册的时候会通过反射获取application所述类中携带有Subscribe注解的方法。并将方法进行封装保存到EventBus中的 handlersByType 成员变量中。
public void register(Object object) {
handlersByType.putAll(finder.findAllHandlers(object));
}
@Override
public Multimap<Class<?>, EventHandler> findAllHandlers(Object listener) {
Multimap<Class<?>, EventHandler> methodsInListener =
HashMultimap.create();
Class clazz = listener.getClass();
while (clazz != null) {
for (Method method : clazz.getMethods()) {
Subscribe annotation = method.getAnnotation(Subscribe.class);
if (annotation != null) {
Class<?>[] parameterTypes = method.getParameterTypes();
if (parameterTypes.length != 1) {
throw new IllegalArgumentException(
"Method " + method + " has @Subscribe annotation, but requires " +
parameterTypes.length + " arguments. Event handler methods " +
"must require a single argument.");
}
Class<?> eventType = parameterTypes[0];
EventHandler handler = makeHandler(listener, method);
methodsInListener.put(eventType, handler);
}
}
clazz = clazz.getSuperclass();
}
return methodsInListener;
}
- 在感知到配置文件发生变动之后,会主动调用eventbus中的post方法,执行对应的handler方法。以zookeeper启动方式为例,说明如下:
private void refreshConfiguration() throws IOException {
eventBus.post(getConfiguration());
}
// post 方法调用dispatchQueuedEvents方法,其中的方法主要做的就是执行上面注册的handler。即handleConfigurationEvent方法
public void post(Object event) {
dispatchQueuedEvents();
}
- 通过配置文件启动不同的组件,其实就是先暂停所有的组件(如果有的话),然后启动所有的组件
- 启动所有的Channel,并阻塞等待所有Channel启动成功。flume使用一个监督者启动所有组件,这样做可以非常方便管理所有组件的生命周期。
for (Entry<String, Channel> entry :
materializedConfiguration.getChannels().entrySet()) {
try {
logger.info("Starting Channel " + entry.getKey());
supervisor.supervise(entry.getValue(),
new SupervisorPolicy.AlwaysRestartPolicy(), LifecycleState.START);
} catch (Exception e) {
logger.error("Error while starting {}", entry.getValue(), e);
}
}
// 等待所有的Channel状态都是启动成功,才会执行后续的启动Sink和Source的逻辑
for (Channel ch : materializedConfiguration.getChannels().values()) {
while (ch.getLifecycleState() != LifecycleState.START
&& !supervisor.isComponentInErrorState(ch)) {
try {
logger.info("Waiting for channel: " + ch.getName() +
" to start. Sleeping for 500 ms");
Thread.sleep(500);
} catch (InterruptedException e) {
logger.error("Interrupted while waiting for channel to start.", e);
Throwables.propagate(e);
}
}
}
// 注意此处的synchronized,说明此处考虑到了并发场景
public synchronized void supervise(LifecycleAware lifecycleAware,
SupervisorPolicy policy, LifecycleState desiredState) {
// 只允许启动一次
Preconditions.checkState(!supervisedProcesses.containsKey(lifecycleAware),
"Refusing to supervise " + lifecycleAware + " more than once");
Supervisoree process = new Supervisoree();
process.status = new Status();
process.policy = policy;
process.status.desiredState = desiredState;
process.status.error = false;
MonitorRunnable monitorRunnable = new MonitorRunnable();
monitorRunnable.lifecycleAware = lifecycleAware;
monitorRunnable.supervisoree = process;
monitorRunnable.monitorService = monitorService;
// 将组件和对组件的监控逻辑保存到Map中
supervisedProcesses.put(lifecycleAware, process);
ScheduledFuture<?> future = monitorService.scheduleWithFixedDelay(
monitorRunnable, 0, 3, TimeUnit.SECONDS);
monitorFutures.put(lifecycleAware, future);
}
组件的start方法是在 MonitorRunnable 的run方法中调用的,MonitorRunnable 是一个线程,run方法中会获取当前组件的状态(默认STOP)以及预期的状态(START),如果不相等则通过预期的状态执行相应的逻辑(ETCD直呼内行~~~)
public static class MonitorRunnable implements Runnable {
@Override
public void run() {
synchronized (lifecycleAware) {
if (!lifecycleAware.getLifecycleState().equals(
supervisoree.status.desiredState)) {
switch (supervisoree.status.desiredState) {
case START:
try {
lifecycleAware.start();
} catch (Throwable e) {
supervisoree.status.failures++;
}
break;
case STOP:
try {
lifecycleAware.stop();
} catch (Throwable e) {
supervisoree.status.failures++;
}
break;
default:
logger.warn("I refuse to acknowledge {} as a desired state",
supervisoree.status.desiredState);
}
}
}
}
}
}
比如上面栗子中的MemoryChannel,看一下start方法到底做了那些操作。start方法其实就是开启了一个计数器,当有其他组件从中获取数据(Event对象)的时候,take_count原子加一;同理当有其他组件向它写入数据的时候,put_count原子加一。
public interface Channel extends LifecycleAware, NamedComponent {
public void put(Event event) throws ChannelException;
public Event take() throws ChannelException;
public Transaction getTransaction();
}
public interface Event {
// 消息的元数据
public Map<String, String> getHeaders();
// 消息数据本身
public byte[] getBody();
}
@Override
public synchronized void start() {
channelCounter.start();
channelCounter.setChannelSize(queue.size());
channelCounter.setChannelCapacity(Long.valueOf(
queue.size() + queue.remainingCapacity()));
super.start();
}
- 启动所有的Sink,结合BCC具体使用场景重点看一下HTTP和Kafka
- 启动所有的Source,结合BCC具体使用场景重点看一下tail -f 日志这种功能方式
Sink_HTTP
- 先看一下Sink接口支持的方法,其中process是最重要的方法
public interface Sink extends LifecycleAware, NamedComponent {
public void setChannel(Channel channel);
public Channel getChannel();
public Status process() throws EventDeliveryException;
public static enum Status {
READY, BACKOFF
}
}
- 查看HttpSink的start方法,发现其也是启动了一个原子计数器而已
@Override
public final void start() {
LOG.info("Starting HttpSink");
sinkCounter.start();
}
- 重点看一下process方法,在该方法中使用到了事务。官方建议使用MemoryTransaction,依靠两个LinkedBlockingDeque(putList和takeList)来实现事务的开始、提交和回滚。也比较好理解,take的时候把数据从queue中转移到takeList中,如果正常提交就清空takeList,如果回滚就把takeList中的数据塞回queue中去。queue是一个双端队列,回滚的时候采用头插法。
@Override
public final Status process() throws EventDeliveryException {
Channel ch = getChannel();
// txn是一个ThrealLocal的成员变量
Transaction txn = ch.getTransaction();
txn.begin();
try {
Event event = ch.take();
HttpURLConnection connection = connectionBuilder.getConnection();
outputStream = connection.getOutputStream();
outputStream.write(eventBody);
outputStream.flush();
outputStream.close();
// 根据HTTP返回的状态码判断是否需要回滚,如果回滚就会把takeList中的数据重新塞入到queue中
int httpStatusCode = connection.getResponseCode();
if (httpStatusCode >= HTTP_STATUS_CONTINUE) {
if (shouldRollback) {
txn.rollback();
} else {
txn.commit();
}
}
return status;
}
Sink_Kafka
- 同理查看KafkaSink的start方法,代码如下。可以看到除了启动计数器之外还构造了KafkaProducer对象,该对象由KafkaClient包提供
@Override
public synchronized void start() {
// instantiate the producer
producer = new KafkaProducer<String,byte[]>(kafkaProps);
counter.start();
super.start();
}
- 同理查看一下process方法,和HTTPSink相比不同之处就是使用了上面构造的KafkaProducer来异步传递消息。send完成之后还需要for循环FutureList来等待发送完成。
@Override
public Status process() throws EventDeliveryException {
Status result = Status.READY;
Channel channel = getChannel();
Transaction transaction = null;
transaction = channel.getTransaction();
transaction.begin();
kafkaFutures.clear();
for (; processedEvents < batchSize; processedEvents += 1) {
event = channel.take();
kafkaFutures.add(producer.send(record, new SinkCallback(startTime)));
}
//Prevent linger.ms from holding the batch
producer.flush();
// publish batch and commit.
if (processedEvents > 0) {
for (Future<RecordMetadata> future : kafkaFutures) {
future.get();
}
}
transaction.commit();
return result;
}
Source_tail
- 查看ExecSource的start方法,代码如下。构造SingleThreadExecutor启动线程从执行的命令中获取消息,并将消息定时批量写入到Channel中
@Override
public void start() {
// Start the counter before starting any threads that may access it.
sourceCounter.start();
executor = Executors.newSingleThreadExecutor();
runner = new ExecRunnable(shell, command, getChannelProcessor(), sourceCounter, restart,
restartThrottle, logStderr, bufferCount, batchTimeout, charset);
// Start the runner thread.
runnerFuture = executor.submit(runner);
// Mark the Source as RUNNING.
super.start();
}
- 启动的线程执行的逻辑如下
@Override
public void run() {
String[] commandArgs = formulateShellCommand(shell, command);
process = Runtime.getRuntime().exec(commandArgs);
reader = new BufferedReader(
new InputStreamReader(process.getInputStream(), charset));
// 新起一个线程,将eventList中的时间每隔3秒批量写入到channel中
future = timedFlushService.scheduleWithFixedDelay(new Runnable() {
@Override
public void run() {
try {
synchronized (eventList) {
if (!eventList.isEmpty() && timeout()) {
flushEventBatch(eventList);
}
}
} catch (Exception e) {
logger.error("Exception occurred when processing event batch", e);
if (e instanceof InterruptedException) {
Thread.currentThread().interrupt();
}
}
}
},
batchTimeout, batchTimeout, TimeUnit.MILLISECONDS);
// 从执行命令获取的结果中获取line并封装成event保存到eventList中
while ((line = reader.readLine()) != null) {
sourceCounter.incrementEventReceivedCount();
synchronized (eventList) {
eventList.add(EventBuilder.withBody(line.getBytes(charset)));
if (eventList.size() >= bufferCount || timeout()) {
flushEventBatch(eventList);
}
}
}
}
流程串联
上面分析了一个agent中不同组件内部的处理逻辑,现在有一个问题现在需要将其串联起来。从源端开始,源端怎么直到该把收集的event传递给哪一个Channel;sink端如何直到该从哪一个channel中获取消息呢?
1、查看配置文件,其中由这么一段。怀疑是此处的配置将不同的组件串联起来了
# 设置源和目的端的channel,把其联通起来
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
2、下面分析代码中如何解析这一段的配置,以静态文件配置方式为例
- 读取文件构造Properties,FlumeConfiguration 的构造函数中会将Properties中类似k-v结构的数据转换成以agentName为key, AgentConfiguration 为value的一个map。AgentConfiguration这个结构体中保存有这个agent相关source、channel、sink信息
@Override
public FlumeConfiguration getFlumeConfiguration() {
BufferedReader reader = null;
reader = new BufferedReader(new FileReader(file));
String resolverClassName = System.getProperty("propertiesImplementation",
DEFAULT_PROPERTIES_IMPLEMENTATION);
Class<? extends Properties> propsclass = Class.forName(resolverClassName)
.asSubclass(Properties.class);
Properties properties = propsclass.newInstance();
properties.load(reader);
return new FlumeConfiguration(toMap(properties));
}
- 将properties中的数据转换为AgentConfiguration
private boolean addRawProperty(String rawName, String rawValue) {
String configKey = name.substring(index + 1);
AgentConfiguration aconf = agentConfigMap.get(agentName);
// 首次查不到该agent相关的配置则新增一个
if (aconf == null) {
aconf = new AgentConfiguration(agentName, errors);
agentConfigMap.put(agentName, aconf);
}
// 将配置文件中的数据写入到AgentConfiguration中
return aconf.addProperty(configKey, value);
}
private boolean addProperty(String key, String value) {
// 将source写入到agentConfiguration的成员变量中
if (CONFIG_SOURCES.equals(key)) {
if (sources == null) {
sources = value;
return true;
}
}
// 将sink写入到agentConfiguration的成员变量中
if (CONFIG_SINKS.equals(key)) {
if (sinks == null) {
sinks = value;
LOGGER.info("Added sinks: {} Agent: {}", sinks, agentName);
return true;
}
}
// 将channel写入到agentConfiguration的成员变量中
if (CONFIG_CHANNELS.equals(key)) {
if (channels == null) {
channels = value;
return true;
}
}
}
- 根据agentConfiguration将channel、source、sink加载到三个hashMap中
loadChannels(agentConf, channelComponentMap);
loadSources(agentConf, channelComponentMap, sourceRunnerMap);
loadSinks(agentConf, channelComponentMap, sinkRunnerMap);
- 先加载channel,代码太长了,但本质做的就是从agentConfiguration中读取配置写入到channelComponentMap中
- 将上面加载好的channelComponentMap作为参数加载Source,在加载的过程中会设置该source的channel为配置中指定的channel
source.setChannelProcessor(channelProcessor);
- 将上面加载好的channelComponentMap作为参数加载Sink,同理在加载的过程中也会将设置该sink的Channel为配置中指定名称的channel
- 将SourceRunner和SinkRunner保存到hashMap中,然后在启动组件的时候调用SinkRunner的start方法,此时会启动一个线程定时执行Sink的process方法
sinkRunnerMap.put(comp.getComponentName(),
new SinkRunner(group.getProcessor()));
for (Map.Entry<String, SourceRunner> entry : sourceRunnerMap.entrySet()) {
conf.addSourceRunner(entry.getKey(), entry.getValue());
}
for (Map.Entry<String, SinkRunner> entry : sinkRunnerMap.entrySet()) {
conf.addSinkRunner(entry.getKey(), entry.getValue());
}
@Override
public void start() {
SinkProcessor policy = getPolicy();
policy.start();
runner = new PollingRunner();
runner.policy = policy;
runner.counterGroup = counterGroup;
runner.shouldStop = new AtomicBoolean();
runnerThread = new Thread(runner);
runnerThread.setName("SinkRunner-PollingRunner-" +
policy.getClass().getSimpleName());
runnerThread.start();
lifecycleState = LifecycleState.START;
}
- 同理,在启动组件的时候也会调用SourceRunner的start方法,Source分为 PollableSource 和 EventDrivenSource 两种类型,因此SourceRunner也分为定时触发和事件触发两种,比如ExecSource就是事件触发
@Override
public void start() {
Source source = getSource();
ChannelProcessor cp = source.getChannelProcessor();
cp.initialize();
source.start();
lifecycleState = LifecycleState.START;
}