NLP系列学习:文本聚类

最近一段时间在文本聚类的工作,一路也遇到了不少坑,自己也写一篇文章记录了一下自己的过程.

1:什么是文本聚类

先说说聚类的概念,聚类又称群分析,是数据挖掘的一种重要的思想,聚类(Cluster)分析是由若干模式(Pattern)组成的,通常,模式是一个度量(Measurement)的向量,或者是多维空间中的一个点。聚类分析以相似性为基础,在一个聚类中的模式之间比不在同一聚类中的模式之间具有更多的相似性。(以上来自百度百科).

再说到文本聚类,文本聚类其实也就是在文本方向上的应用,首先我们要把一个个文档的自然语言转换成数学信息,这样形成高维空间点之后再去计算点与点之间的距离,然后将这些距离比较近的聚成一个簇,这些簇的中心成为簇心.而我们做的就是保证簇内点的距离足够近,簇与簇的距离足够远.

我接到的任务是在评论文本上进行聚类操作,起初以为很简单,但是发现其实还是不是很好操作的,有几个原因,一方面是评论有些部分语义其实是重复的,这样导致一些类别会重合,这样使用聚类的方法往往是不准确的,另一方面是一些评论上的词语使用近义词和一些音译字来替换词语,比如”微信”会转成”V信”等这些在分词的时候会有一些问题.并且又因为聚类是一种非监督学习,往往给我们的数据太多(给我的评论数据有80w,有多少类,什么类)我们都不知道,我们也只能轮廓系数不断地测试,找到一个合适的结果出来.

并且我们用的一些算法也有一些问题,比如我们使用的K-means方法,每一次选取的簇心是随机的,这样一来得到的结果也是每次不一样的,所以聚类算法也是比较难评价,这也是一些困难的部分.

2:文本聚类的过程

主要的过程如图所示,其实主要的部分有三个:

第一部分,分词处理,我们要把中文文章要进行分词,这一点中文文章和英文文章有一些区别,因为英文单词是单个构成的,也就不需要分词了,而我们中文是需要分词的,并且中文之间有一些词尽管大量出现,但是对于文章的分类结构起不到太大的意义,比如”的”,”了”,”么””应该”,这些词去计算他们既浪费空间又浪费时间,出于+1s的因素,我们也要节约时间啊,首先我们就加入一个停用词表,在进行分词的时候进行去掉.

第二部分:分词后将分词转换为词向量

关于词向量我们有一些比较常用的模型,比如one-hotm,BOW词袋模型,连续词袋模型(CBOW)和Skip-Gram模型和Word2vec模型,在这次任务中我是用的是BOW词袋模型,在转换为词向量值我们要将其转换成tfidf矩阵,tfidf其实可以看作是提取的特征的一次加权,是根据一个单词在当前文章中出现的频率和该单词在所有语料中出现的频率评估一个单词的重要性,当一个单词在这篇文章中出现的次数很多的时候,这个词语更加重要;但如果它在所有文章中出现的次数都很多,那么它就显得不那么重要

第三部分:选择聚类算法

这里的算法大家常用的是K-means和DBSCAN,这两种算法用的最多,但是在高维空间里边K-means似乎并不是很好,究其原因是因为维度太高,簇与簇之间的距离太小了,如果直接去聚类,这一部分似乎效果不太好,这时候就需要用到主成分分析PCA,大致的思路是大致意思就是取这个高维向量中方差最大的方向经过一些数学变换将有用的部分保留,没用的部分舍弃,这种办法同样适合分类算法中寻找最大的特征.

这一部分似乎也得单独拿出一篇文章好好写一下,毕竟太多坑了.

最后算法评测,对于K-means,我们使用的是簇的距离进行评定,对于Brich层次聚类,我们使用的是轮廓系数来评定,最后发现,这真是一个调参活,感叹真不容易.

最后效果:

红色虚线是轮廓系数,柱状图是类别,尽量多的让柱状在轮廓系数附近,我们可以认为结果取得不错.

具体的再写文章细说吧,困了休息.

祝大家度过愉快的一天

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,928评论 6 509
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,748评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,282评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,065评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,101评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,855评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,521评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,414评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,931评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,053评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,191评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,873评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,529评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,074评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,188评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,491评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,173评论 2 357

推荐阅读更多精彩内容

  • 聚类算法 前面介绍的集中算法都是属于有监督机器学习方法,这章和前面不同,介绍无监督学习算法,也就是聚类算法。在无监...
    飘涯阅读 41,334评论 3 52
  • 文本关键词抽取,是对文本信息进行高度凝练的一种有效手段,通过3-5个词语准确概括文本的主题,帮助读者快速理解文本信...
    atLee阅读 22,170评论 8 46
  • 注:这篇技术文章是9月我就职于W公司时在完成新闻聚类后整理的技术文档,因数据管控严格,文档中的聚类结果无法从公司电...
    Mc杰夫阅读 8,605评论 5 5
  • 1.获取屏幕宽度与高度 2.获取通知中心 3.设置随机颜色 4.设置RGB颜色/ 设置RGBA颜色 5.自定义高效...
    小小Q吖阅读 143评论 0 0
  • 一场沉默一场伤 打破谁给的妄想 亭子中的年少轻狂 许下谁承诺难忘 一次奔跑一次飞翔 一个人舞台唱响 操场中的年少轻...
    濡江生阅读 316评论 4 3