冒泡排序---Bubble Sort
冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来,遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
冒泡排序算法的运作如下:
1、·比较相邻的元素,如果第一个比第二个大(升序),就交换他们两个。
2、·对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这步做完后,最后的元素会是最大的数。
3、·针对所有的元素重复以上的步骤,除了最后一个。
4、·持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
时间复杂度
·最优时间复杂度:O(n) (表示遍历一次发现没有任何可以交换的元素,排序结束。)
·最坏时间复杂度:O(n2)
·稳定性:稳定
选择排序---Selection Sort
选择排序是一种简单直观的排序算法。它的工作原理如下:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
选择排序的主要优点与数据移动有关。如果某个元素位于正确的最终位置上,则它不会被移动。选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对n个元素的表进行排序总共进行至多n-1次交换。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种。
时间复杂度
·最优时间复杂度:O(n2)
·最坏时间复杂度:O(n2)
·稳定性:不稳定(考虑升序每次选择最大的情况)
插入排序---Insertion Sort
插入排序是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
时间复杂度
·最优时间复杂度:O(n) (升序排列,序列已经处于升序状态)
·最坏时间复杂度:O(n2)
·稳定性:稳定
快速排序---Quick Sort
快速排序,又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
步骤为:
1、从数列中挑出一个元素,称为"基准"(pivot),
2、重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
3、递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
时间复杂度
·最优时间复杂度:O(nlogn)
·最坏时间复杂度:O(n2)
稳定性:不稳定
归并排序---Merge Sort
归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组。将数组分解最小之后,然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。
时间复杂度
·最优时间复杂度:O(nlogn)
·最坏时间复杂度:O(nlogn)
·稳定性:稳定
希尔排序---Shell Sort
希尔排序是插入排序的一种,也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法,希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
希尔排序过程
希尔排序的基本思想是:将数组列在一个表中并对列分别进行插入排序,重复这过程,不过每次用更长的列(步长更长了,列数更少了)来进行。最后整个表就只有一列了。将数组转换至表是为了更好地理解这算法,算法本身还是使用数组进行排序。
常见排序算法效率比较