一个SQL优化技巧

一个SQL优化技巧

我们系统中存在大量类似如下查询:

SELECT p.*, di.name AS district, q.name AS scene_name, (
    SELECT user_name
    FROM fw_user
    WHERE fw_user_id = u.parent_id
) AS parent_phone, split_part(p.location, ',', 1) AS province
, split_part(p.location, ',', 2) AS city
FROM jd_patient p
    LEFT JOIN fw_user u ON u.fw_user_id = p.fw_user_id
    LEFT JOIN jd_district di ON p.jd_district_id = di.jd_district_id
    LEFT JOIN jd_qrcode q ON p.jd_qrcode_id = q.jd_qrcode_id
WHERE 1 = 1
AND p.fw_user_id IS NOT NULL
ORDER BY p.create_date DESC, p.location
LIMIT 10 OFFSET 0;

这些查询在数据量小的时候,不会出现效率瓶颈,但是数据量一旦增大,就会显著地降低查询速度。

使用explain查看其执行速度:

                                                QUERY PLAN

------------------------------------------------------------------------------------------
-----------------
 Limit  (cost=17975306.40..17975306.43 rows=10 width=2008)
   ->  Sort  (cost=17975306.40..17980273.18 rows=1986709 width=2008)
         Sort Key: p.create_date, p.location
         ->  Hash Left Join  (cost=570.27..17932374.34 rows=1986709 width=2008)
               Hash Cond: (p.jd_qrcode_id = q.jd_qrcode_id)
               ->  Hash Left Join  (cost=2.26..1120474.10 rows=1986709 width=1994)
                     Hash Cond: (p.jd_district_id = di.jd_district_id)
                     ->  Nested Loop Left Join  (cost=0.42..1093343.76 rows=1986709 width=
1856)
                           ->  Seq Scan on jd_patient p  (cost=0.00..107821.94 rows=198670
9 width=1840)
                                 Filter: (fw_user_id IS NOT NULL)
                           ->  Index Scan using pk_fw_user on fw_user u  (cost=0.42..0.49
rows=1 width=32)
                                 Index Cond: (fw_user_id = p.fw_user_id)
                     ->  Hash  (cost=1.37..1.37 rows=37 width=154)
                           ->  Seq Scan on jd_district di  (cost=0.00..1.37 rows=37 width=
154)
               ->  Hash  (cost=427.45..427.45 rows=11245 width=30)
                     ->  Seq Scan on jd_qrcode q  (cost=0.00..427.45 rows=11245 width=30)
               SubPlan 1
                 ->  Index Scan using pk_fw_user on fw_user  (cost=0.42..8.44 rows=1 width
=12)
                       Index Cond: (fw_user_id = u.parent_id)
(19 rows)

优化方法

上面的语句查询了大量数据(包括数据条数、以及p.* ),然后使用临时表order by,但最终又只返回了10条数据。
在结果集大的时候,这个临时表会非常大,内存放不下,于是全部拷贝到磁盘,导致IO飙升,效率急剧下降。

优化的基本策略是尽早缩小结果范围,思路是拆分sql,将排序操作和查询所有数据的操作分开。

具体来看,考虑到实际上需要的数据只有10条,我们可以先找到这10条数据的jd_patient_id:

SELECT p.jd_patient_id
FROM jd_patient p
    LEFT JOIN fw_user u ON u.fw_user_id = p.fw_user_id
    LEFT JOIN jd_district di ON p.jd_district_id = di.jd_district_id
    LEFT JOIN jd_qrcode q ON p.jd_qrcode_id = q.jd_qrcode_id
WHERE 1 = 1
AND p.fw_user_id IS NOT NULL
ORDER BY p.create_date DESC, p.location
LIMIT 10 OFFSET 0;

然后在这10条数据中联合查询各字段的值:

SELECT p.name, di.name AS district, q.name AS scene_name, (
    SELECT user_name
    FROM fw_user
    WHERE fw_user_id = u.parent_id
) AS parent_phone, split_part(p.location, ',', 1) AS province
, split_part(p.location, ',', 2) AS city
FROM jd_patient p
    LEFT JOIN fw_user u ON u.fw_user_id = p.fw_user_id
    LEFT JOIN jd_district di ON p.jd_district_id = di.jd_district_id
    LEFT JOIN jd_qrcode q ON p.jd_qrcode_id = q.jd_qrcode_id
WHERE p.jd_patient_id IN ( xxxxx )
)
ORDER BY p.create_date DESC, p.location

于是优化后的sql如下:

SELECT p.name, di.name AS district, q.name AS scene_name, (
    SELECT user_name
    FROM fw_user
    WHERE fw_user_id = u.parent_id
) AS parent_phone, split_part(p.location, ',', 1) AS province
, split_part(p.location, ',', 2) AS city
FROM jd_patient p
    LEFT JOIN fw_user u ON u.fw_user_id = p.fw_user_id
    LEFT JOIN jd_district di ON p.jd_district_id = di.jd_district_id
    LEFT JOIN jd_qrcode q ON p.jd_qrcode_id = q.jd_qrcode_id
WHERE p.jd_patient_id IN (
    SELECT p.jd_patient_id
    FROM jd_patient p
        LEFT JOIN fw_user u ON u.fw_user_id = p.fw_user_id
        LEFT JOIN jd_district di ON p.jd_district_id = di.jd_district_id
        LEFT JOIN jd_qrcode q ON p.jd_qrcode_id = q.jd_qrcode_id
    WHERE 1 = 1
    AND p.fw_user_id IS NOT NULL
    ORDER BY p.create_date DESC, p.location
    LIMIT 10 OFFSET 0
)
ORDER BY p.create_date DESC, p.location

这样便避免了产生大临时表。
最终性能提高了两个数量级(17975306.40 --> 150933.10):

                                                       QUERY PLAN

------------------------------------------------------------------------------------------
--------------------------------
 Sort  (cost=150933.10..150933.12 rows=10 width=201)
   Sort Key: p.create_date, p.location
   ->  Nested Loop Left Join  (cost=150755.44..150932.93 rows=10 width=201)
         ->  Nested Loop Left Join  (cost=150755.15..150845.33 rows=10 width=203)
               ->  Nested Loop Left Join  (cost=150755.01..150843.65 rows=10 width=81)
                     ->  Nested Loop  (cost=150754.59..150838.86 rows=10 width=81)
                           ->  HashAggregate  (cost=150754.16..150754.26 rows=10 width=16)
                                 Group Key: p_1.jd_patient_id
                                 ->  Limit  (cost=150754.01..150754.03 rows=10 width=86)
                                       ->  Sort  (cost=150754.01..155720.78 rows=1986709 w
idth=86)
                                             Sort Key: p_1.create_date, p_1.location
                                             ->  Seq Scan on jd_patient p_1  (cost=0.00..1
07821.94 rows=1986709 width=86)
                                                   Filter: (fw_user_id IS NOT NULL)
                           ->  Index Scan using pk_jd_patient on jd_patient p  (cost=0.43.
.8.45 rows=1 width=97)
                                 Index Cond: (jd_patient_id = p_1.jd_patient_id)
                     ->  Index Scan using pk_fw_user on fw_user u  (cost=0.42..0.47 rows=1
 width=32)
                           Index Cond: (fw_user_id = p.fw_user_id)
               ->  Index Scan using pk_jd_district on jd_district di  (cost=0.14..0.16 row
s=1 width=154)
                     Index Cond: (p.jd_district_id = jd_district_id)
         ->  Index Scan using pk_jd_qrcode on jd_qrcode q  (cost=0.29..0.30 rows=1 width=3
0)
               Index Cond: (p.jd_qrcode_id = jd_qrcode_id)
         SubPlan 1
           ->  Index Scan using pk_fw_user on fw_user  (cost=0.42..8.44 rows=1 width=12)
                 Index Cond: (fw_user_id = u.parent_id)
(24 rows)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容