使用K-近邻算法构建手写识别系统

1 写在前面

前段时间开始看机器学习的相关知识,PLA? break point? dvc? 或是被一堆算法的数学公式推导搞得云里雾里,我开始意识到如果只拘泥于理论部分的学习,我的兴趣早晚会被消磨殆尽,必须在学习理论知识的同时尝试使用机器学习的算法解决一些“实际”问题。一方面,让自己明白机器学习各个算法是如何解决实际问题的;另一方面,通过实际编码加深对算法本身的理解。
今天记录一个使用K-紧邻算法(kNN)解决的问题,可以说KNN是最简单的机器学习算法之一。

2 kNN原理

kNN属于监督学习(supervised learning)的范畴,因为kNN的样本数据集中的每个数据都存在标签(label),即我们知道样本集中每个数据与所属分类的对应关系。输入没有label的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中与新数据特征最相似(最近邻)的前k个样本数据的label,最后选择这k个最相似数据中出现次数最多的label,作为新数据的label。

新数据与样本数据是如何比较的呢?

通常输入的一个“数据”是由多个特征数据(feature)组成的,我们把这个“数据”放到空间中,一个特征数据代表一个维度,受人脑的限制,我们无法想象多维的情景。为了方便想象,假定每个“数据”只有两个特征,那么放到空间中就是我们最熟悉的二维平面,在这个平面中两个特征可以确定一个点,新数据与样本数据之间的比较就是求两点之间的“距离”,通常使用欧式距离,以二维为例:

二维空间中的欧式距离

计算新数据与每个样本数据的距离,选取前k个距离最小的样本数据,取得这k个数据的label,最后选择这k个label中出现次数最多的label作为新数据的label。

KNN算法的代码实现

最开始需要导入两个模块:第一个是科学计算包NumPy,第二个是运算符模块(operator)。

from numpy import *
import operator

算法的核心代码:

def k_classify (inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]   # 获取数据集第一维度
    diffMat = tile(inX, (dataSetSize, 1)) - dataSet
    sqDiffMat = diffMat ** 2
    sqDistance = sqDiffMat.sum(axis=1)
    distance = sqDistance ** 0.5    # 计算距离
    sortedDistIndicies = distance.argsort()   # 返回距离从小到大排列后数值原先的索引值(下标)
    classCount = {}
    for i in range(k):    # 选择距离最小的k个点,并统计label
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)  # 按label的个数,对其降序排序
    return sortedClassCount[0][0]     # 返回个数最大的label

该算法函数有4个参数,inX是要测试的新数据,dataSet是训练样本集,labels是标签集,k通常取不大于20的整数。

3 构建手写识别系统

收集数据

为了简单起见,这里构造的系统只能识别0到9的数字,需要识别的数字已经使用图形软件处理成了宽和高是32x32像素的黑白图像,并且将图像转换为了文本格式,如下图1所示。


图1:数字6

数据集有两个,一个为trainningDigits文件中包含2000个例子,每个数字有200个样本,部分样本如图2所示。另一个为testDigits文件中包含大约900个测试数据。

图2:训练集部分样本

说明:文件名格式均为a_b.txt,其中a表示该文件中图形的数字,之后将作为label使用;b为该数字的序号(不重要),相同的数字之间形状上均有不同的地方。

准备数据

需要识别的数字的文本文件有了,接下来需要将其转化为算法函数可处理的数据类型。
这里将32x32的二进制图像矩阵转换为1x1024的向量,并将其存在1x1024的NumPy数组中。

def imgVector(filename):
   returnVect = zeros((1,1024)) 
   fr = open(filename)
   for i in range(32):
       linestr = fr.readline()  # 逐行读取
       for j in range(32):
           returnVect[0,32*i+j] = int(linestr[j])
   return returnVect      # 返回1x1024的数组

测试与运行算法

def handwritingClassTest():
    hwLabels = []
    trainingFileList = listdir('trainingDigits')      # 读取训练集
    m = len(trainingFileList)
    trainingMat = zeros((m, 1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(fileStr.split('_')[0])    # 获取label
        hwLabels.append(classNumStr)      # 构建标签集
        trainingMat[i,:] = imgVector('trainingDigits/%s' % fileNameStr) # 处理训练集数据
    errorCount = 0.0
    testFileList = listdir('testDigits')    #读取测试集,进行测试
    mTest = len(testFileList)
    for i in range(mTest):
        fileNameStr = testFileList[i]
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(fileStr.split('_')[0])
        vectUnderTest = imgVector('testDigits/%s' % fileNameStr)
        classifierResult = k_classify(vectUnderTest, trainingMat, hwLabels, 3)    # 使用kNN算法
        if (classifierResult != classNumStr):     # 将kNN输出label与实际label对比
            errorCount += 1.0
    print "the total error number of error is: %d" % errorCount
    print "\nthe total error rate is: %f" % (errorCount/float(mTest)) # 输出错误率
运行结果
图3:运行结果

通过使用测试集测试,在大约900个数字中有11个数字,KNN算法识别错误,正确率达98.8%,可见kNN在这个数字识别问题上的表现是不错的。

收获

通过实际编码实现kNN算法,并将其运用在一个实际例子中,让我对该算法的原理有了更深的理解。
第一次接触到了科学计算包NumPy,学习到了这个库中几个重要方法,如:zeros() shape() tile() sum(axis=*) argsort() 以及使用了python中几个方法,如:listdir() split() strip()
其实,这个算法的执行效率并不高。测试集有大约900个,所以kNN算法要执行900次,那每次的计算量多少呢?由于训练集样本有2000个,因此就需要做2000次距离计算,每个距离计算还有1024个维度浮点运算,可见计算量不小,在我电脑上大约运行了十几秒才出结果...那么有什么方法可以减少计算时间的开销呢?这个之后再说。
万事开头难...

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容