Understanding and visualizing data with Python

Course syllabus

Week 1 - Introduction to data
Week 2 - Univariate data
Week 3 - Multivariate data
Week 4 - Populations and samples


Week 1

Course content

  • Data can be numbers, images, words, audio
  • Two key types of data: Organic/process data, "Designed data collection"
  • i.i.d. means independent and identically distributed
  • In case data is not i.i.d., dependencies and differences need to be accounted for in analysis.
  • variable types
  1. continuous vs discrete
  2. ordinal vs nominal
    Quantitative discrete variables are numeric, measurable quantities with a set range of countable values
    Nominal variables consist of groups or names in which there is no inherent ordering.
    Ordinal variables consist of groups or names with an inherent ordering or ranking.
  3. Data types in python
  4. Introduction to libraries and data management

Week 2

Course content

  • categorical data, tables, bar charts and pie charts
  • histograms: shape, center, spread, outliers
  • numerical summaries: Min, 1st quartile(25%), Median(50%), 3rd quartile(75%), Max
  • standard score (empirical rule) 68-95-99.7 rule
    standard score = \frac{observation-mean}{standard deviation}
  • Boxplots
    Boxplots can hide gaps and clusters
  • Seaborn library(sis)
sns.distplot().set()
sns.boxplot()

Week 3

Course content

  • Gathering multivariate categorical data
  • Two way or contingency table
  • Marginal and conditional distribution
  • Two univariate bar chart, side by side bar chart, stacked bar chart, Mosaic plot
  • Association type: linear, quadratic, no association
  • Positive linear association, negative linear association
  • Association strength(weak, moderate, strong) - measured by Pearson correlation (R or \rho), number between -1 and 1
    Correlation does not imply causation
  • Simpson's paradox
  • Multivariate data selection
  • Multivariate distributions

Week 4

Course content

  • Sampling from well-defined populations
    Option 1: Conducting a population census
    Option 2: Probability sampling
    Option 3: Non-probability sampling
  • Probability sampling
    Simple random sampling
    Complex samples
  • Non probability sampling
  • Sampling distribution
  • Sampling variance
  • A sampling distribution is the distribution of all possible estimates that would arise from hypothetical repeated sampling, and larger sample sizes will result in a sampling distribution with less variance, meaning that estimates are more precise.
  • Making population inference based on only one sample
  • Inference for non-probability samples
  • Complex samples (stratification)
  • The empirical rule of distribution
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

  • 渐变的面目拼图要我怎么拼? 我是疲乏了还是投降了? 不是不允许自己坠落, 我没有滴水不进的保护膜。 就是害怕变得面...
    闷热当乘凉阅读 9,833评论 0 13
  • 感觉自己有点神经衰弱,总是觉得手机响了;屋外有人走过;每次妈妈不声不响的进房间突然跟我说话,我都会被吓得半死!一整...
    章鱼的拥抱阅读 6,657评论 4 5
  • 夜莺2517阅读 127,905评论 1 9
  • 版本:ios 1.2.1 亮点: 1.app角标可以实时更新天气温度或选择空气质量,建议处女座就不要选了,不然老想...
    我就是沉沉阅读 11,902评论 1 6

友情链接更多精彩内容