归并排序
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。归并排序是一种稳定的排序方法。
原理
- 将序列每相邻两个数字进行归并操作(merge),形成floor
(n/2+n%2)
个序列,排序后每个序列包含两个元素 - 将上述序列再次归并,形成floor
(n/4)
个序列,每个序列包含四个元素 - 重复步骤2,直到所有元素排序完毕。
代码实现
递归
//将有序的SR[i..mid]和SR[mid+1..n]归并为有序的TR[i..n]
void Merge(int SR[],int TR[],int i,int m,int n)
{
int j,k,l;
//1.将SR中记录由小到大地并入TR
for(j=m+1,k=i;i<=m && j<=n;k++)
{
if (SR[i]<SR[j])
TR[k]=SR[i++];
else
TR[k]=SR[j++];
}
//2.将剩余的SR[i..mid]复制到TR
if(i<=m)
{
for(l=0;l<=m-i;l++)
TR[k+l]=SR[i+l];
}
//3.将剩余的SR[j..mid]复制到TR
if(j<=n)
{
for(l=0;l<=n-j;l++)
TR[k+l]=SR[j+l];
}
}
void MSort(int SR[],int TR1[],int low, int hight){
int mid;
int TR2[MAXSIZE+1];
if(low == hight)
TR1[low] = SR[low];
else{
//1.将SR[low...hight] 平分成 SR[low...mid] 和 SR[mid+1,hight];
mid = (low + hight)/2;
//2. 递归将SR[low,mid]归并为有序的TR2[low,mid];
MSort(SR, TR2, low, mid);
//3. 递归将SR[mid+1,hight]归并为有序的TR2[mid+1,hight];
MSort(SR, TR2, mid+1, hight);
//4. 将TR2[low,mid] 与 TR2[mid+1,hight], 归并到TR1[low,hight]中
Merge(TR2, TR1, low, mid, hight);
}
}
void MergeSort(SqList *L){
MSort(L->r,L->r,1,L->length);
}
非递归
//对SR数组中相邻长度为s的子序列进行两两归并到TR[]数组中;
void MergePass(int SR[],int TR[],int s,int length){
int i = 1;
int j;
//s=1 循环结束位置:8 (9-2*1+1=8)
//s=2 循环结束位置:6 (9-2*2+1=6)
//s=4 循环结束位置:2 (9-2*4+1=2)
//s=8 循环结束位置:-6(9-2*8+1=-6) s = 8时,不会进入到循环;
while (i<= length-2*s+1) {
//两两归并(合并相邻的2段数据)
Merge(SR, TR, i, i+s-1, i+2*s-1);
i = i+2*s;
}
//如果i<length-s+1,表示有2个长度不等的子序列. 其中一个长度为length,另一个小于length
// 1 < (9-8+1)(2)
//s = 8时, 1 < (9-8+1)
if(i < length-s+1){
//Merge(SR,TR,1,8,9)
Merge(SR, TR, i, i+s-1, length);
}else{
//只剩下一个子序列;
for (j = i; j <=length; j++) {
TR[j] = SR[j];
}
}
}
void MergeSort2(SqList *L){
int *TR = (int *)malloc(sizeof(int) * L->length);
int k = 1;
//k的拆分变换是 1,2,4,8;
while (k < L->length) {
//将SR数组按照s=2的长度进行拆分合并,结果存储到TR数组中;
//注意:此时经过第一轮的归并排序的结果是存储到TR数组了;
MergePass(L->r, TR, k, L->length);
k = 2*k;
//将刚刚归并排序后的TR数组,按照s = 2k的长度进行拆分合并. 结果存储到L->r数组中;
//注意:因为上一轮的排序的结果是存储到TR数组,所以这次排序的数据应该是再次对TR数组排序;
MergePass(TR, L->r, k, L->length);
k = 2*k;
}
}
快速排序
基本思想
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
原理
- 设置两个变量i、j,排序开始的时候:i=0,j=N-1;
- 以第一个数组元素作为关键数据,赋值给key,即key=A[0];
- 从j开始向前搜索,即由后开始向前搜索(j--),找到第一个小于key的值A[j],将A[j]和A[i]的值交换;
- 从i开始向后搜索,即由前开始向后搜索(i++),找到第一个大于key的A[i],将A[i]和A[j]的值交换;
- 重复第3、4步,直到i=j;
(3,4步中,没找到符合条件的值,即3中A[j]不小于key,4中A[i]不大于key的时候改变j、i的值,使得j=j-1,i=i+1,直至找到为止。找到符合条件的值,进行交换的时候i, j指针位置不变。另外,i==j这一过程一定正好是i+或j-完成的时候,此时令循环结束)。
代码实现
//快速排序-优化
int Partition(SqList *L,int low,int high){
int pivotkey;
/**1.优化选择枢轴**/
//计算数组中间的元素的下标值;
int m = low + (high - low)/2;
//将数组中的L->r[low] 是整个序列中左中右3个关键字的中间值;
//交换左端与右端的数据,保证左端较小;
if(L->r[low]>L->r[high])
swap(L, low, high);
//交换中间与右端的数据,保证中间较小;
if(L->r[m]>L->r[high])
swap(L, high, m);
//交换中间与左端,保证左端较小;
if(L->r[m]>L->r[low])
swap(L, m, low);
/**2.优化不必要的交换**/
//pivokey 保存子表中第1个记录作为枢轴记录;
pivotkey = L->r[low];
//将枢轴关键字备份到L->r[0];
L->r[0] = pivotkey;
//从表的两端交替地向中间扫描;
while (low < high) {
//比较,从高位开始,找到比pivokey更小的值的下标位置;
while (low < high && L->r[high] >= pivotkey)
high--;
//将比枢轴值小的记录交换到低端;
//swap(L, low, high);
//采用替换的方式将比枢轴值小的记录替换到低端
L->r[low] = L->r[high];
//比较,从低位开始,找到比pivokey更大的值的下标位置;
while (low < high && L->r[low] <= pivotkey)
low++;
//将比枢轴值大的记录交换到高端;
//swap(L, low, high);
//采样替换的方式将比枢轴值大的记录替换到高端
L->r[high] = L->r[low];
}
//将枢轴数值替换会L->r[low]
L->r[low] = L->r[0];
//返回枢轴pivokey 所在位置;
return low;
}
//对顺序表L的子序列L->r[low,high]做快速排序;
#define MAX_LENGTH_INSERT_SORT 7 //数组长度的阀值
void QSort(SqList *L,int low,int high){
int pivot;
//if(low < high){
//当high-low 大于常数阀值是用快速排序;
if((high-low)>MAX_LENGTH_INSERT_SORT){
//将L->r[low,high]一分为二,算出中枢轴值 pivot;
pivot = Partition(L, low, high);
printf("pivot = %d L->r[%d] = %d\n",pivot,pivot,L->r[pivot]);
//对低子表递归排序;
QSort(L, low, pivot-1);
//对高子表递归排序
QSort(L, pivot+1, high);
}else{
//当high-low小于常数阀值是用直接插入排序
InsertSort(L);
}
}
void QuickSort(SqList *L)
{
QSort(L,1,L->length);
}