simtext: 中文文档相似性计算库

simtext

simtext可以计算两文档间四大文本相似性指标,分别为:

  • Sim_Cosine cosine相似性
  • Sim_Jaccard Jaccard相似性
  • Sim_MinEdit 最小编辑距离
  • Sim_Simple 微软Word中的track changes

具体算法介绍可翻看Cohen, Lauren, Christopher Malloy&Quoc Nguyen(2018) 第60页

[图片上传失败...(image-e21c45-1587878265286)]

安装

pip install simtext

使用

中文文本相似性

from simtext import similarity

text1 = '在宏观经济背景下,为继续优化贷款结构,重点发展可以抵抗经济周期不良的贷款'
text2 = '在宏观经济背景下,为继续优化贷款结构,重点发展可三年专业化、集约化、综合金融+物联网金融四大金融特色的基础上'

sim = similarity()
res = sim.compute(text1, text2)
print(res)

Run

{'Sim_Cosine': 0.46475800154489, 
'Sim_Jaccard': 0.3333333333333333, 
'Sim_MinEdit': 29, 
'Sim_Simple': 0.9889595182335229}

英文文本相似性

from simtext import similarity

A = 'We expect demand to increase.'
B = 'We expect worldwide demand to increase.'
C = 'We expect weakness in sales'

sim = similarity()
AB = sim.compute(A, B)
AC = sim.compute(A, C)

print(AB)
print(AC)

Run

{'Sim_Cosine': 0.9128709291752769, 
'Sim_Jaccard': 0.8333333333333334, 
'Sim_MinEdit': 2, 
'Sim_Simple': 0.9545454545454546}

{'Sim_Cosine': 0.39999999999999997, 
'Sim_Jaccard': 0.25, 
'Sim_MinEdit': 4, 
'Sim_Simple': 0.9315789473684211}

参考文献

Cohen, Lauren, Christopher Malloy, and Quoc Nguyen. Lazy prices. No. w25084. National Bureau of Economic Research, 2018.

如果

如果您是经管人文社科专业背景,编程小白,面临海量文本数据采集和处理分析艰巨任务,个人建议学习《python网络爬虫与文本数据分析》视频课。作为文科生,一样也是从两眼一抹黑开始,这门课程是用五年时间凝缩出来的。自认为讲的很通俗易懂o( ̄︶ ̄)o,

  • python入门
  • 网络爬虫
  • 数据读取
  • 文本分析入门
  • 机器学习与文本分析
  • 文本分析在经管研究中的应用

感兴趣的童鞋不妨 戳一下《python网络爬虫与文本数据分析》进来看看~

更多

支持一下

[图片上传失败...(image-ae4346-1587878265287)]

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,753评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,668评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,090评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,010评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,054评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,806评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,484评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,380评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,873评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,021评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,158评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,838评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,499评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,044评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,159评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,449评论 3 374
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,136评论 2 356

推荐阅读更多精彩内容