详解即时通讯音视频开发实时语音通讯丢包补偿技术

即时通讯应用中的实时音视频技术,几乎是IM开发中的最后一道高墙。原因在于:实时音视频技术 = 音视频处理技术 + 网络传输技术 的横向技术应用集合体,而公共互联网不是为了实时通信设计的。

现如今,随着移动互联网越来越普及,实时语音通讯应用越来越流行,但因网络状况及相关因素的影响,实时语音通讯的丢包问题在所难免,与视频不同,语音丢包处理不佳,会让通话双方体验非常糟糕。好在已经有越来越成熟的丢包补偿技术。

丢包补偿技术可以分为两类:基于发送端补偿和基于接受端补偿。基于发送端补偿包括前向差错纠正、交织和重传技术;基于接受端补偿包括了多种错误隐蔽算法。

基于发送端补偿可以分为两类:主动重传(本文不讨论)和被动通道编码。被动通道编码包含传统的前向差错纠正技术(FEC)和基于交织的技术。按照和媒体内容的关系,前向差错纠正包括与媒体无关的方法和利用音频属性的媒体相关方法。

这种方式中每n个媒体数据包附带k个校验包。校验包的每个比特都是由相关的数据包的同位置比特产生的。

优点:该方式补偿与具体的媒体内容无关,计算量小,易于实施。

缺点:不能立即解码,引入延时,带宽增加。

一种简单的抗丢包方式是,采用多个包传送同样的音频单元。一旦丢了一个,信息可以从另外一个包含该单元的恢复出来。

第一个传输的复本称为主要编码,第二个传输的复本称为次要编码。次要编码可以是和第一个相同,但是大部分采用较低码率和较低音质的编码技术。编码器的选择取决于带宽需求和计算复杂度需求。


如果主要编码器能做到高音质和低码率,那么次要编码器可以采用和主要编码器一样的方法。比如,ITU G.723.1可以采用这种方式,因其音质好,码率5.3/6.3kb/s,但计算量大。

媒体相关前向差错纠正引起了包大小的额外开销。比如,8kHz PCM U律的主要编码器占用64kb/s带宽,全速率GSM编码的次要编码器占用13.2kb/s带宽,这样就增加了20%的带宽开销。但是,额外的带宽开销并不是固定而是可变的。分析表明,利用语音的特性,并不需要在每个语音包附加媒体相关前向差错纠正,加上这些策略,可以节省30%的带宽。

媒体相关前向差错纠正的一个好处就是不会引入大的延时,最多也就是一个包的延时。这适合实时交互的应用。

当我们考虑比语音包还小的语音单元并且可以承受较大的延时,交织是一种很有用的抗丢包技术。语音单元在传输之前重新排序,这样在传输流中原来领近的语音单元变成有规律间隔的单元,接收端再按原来的顺序排列回来。

交织带来两个好处:

长时间的丢包给听觉带来不舒适和难以理解,但是短时间的单元丢失是更易被听觉接受的,也容易理解;

错误隐藏比较容易处理短时间的单元丢失,因为时间短语音的变化小。即时通讯软件开发可以咨询蔚可云


交织的不足就是也会引入延时,只适合非交互式的应用。交织的另外一大好处就是不会引起带宽需求的增加。

当发送端不能做到较好的丢包补偿或发送端不能参与丢包补偿时,需要在接受端进行丢包补偿。错误隐蔽算法就是接受端的丢包补偿技术,它产生一个与丢失的语音包相似的替代语音。这种技术的可能性是基于语音的短时语音相似性,它可以处理较小的丢包率(<15%)和较小的语音包(4-40ms)。当丢包的长度达到音素的长度(5-100ms),该技术就不适应了,因为整个音素都会丢失。

插入一个填充包来修复丢包,填充包一般都很简单,比如静音包、噪声包或重复前面的包。虽然容易实现。但这种方法的效果是很差的。该方式的缺点就是没有利用语音的信息来重新产生信号。

拼接法(Splicing):直接把丢包两端的语音拼接起来,这种最简单的方法不但打乱了语音的时钟顺序,而且只适合很小的丢包间隔(4-16ms)和极低的丢包率,丢包率大于3%就不能忍受了。

静音置换法(Silence substitution):该方法在丢包处加入静音,这样保持了语音的时钟顺序。它只有在很小的包大小(<4ms)和很低的丢包率(<2%)是有效的。随着包大小的增加,他的性能明显下降,到40ms的包大小就完全不能接受了。

噪声置换法(Noise substitution):该方法在丢包处加入背景噪声或舒服噪声。它比静音置换法好处是提高了语音的可理解性,效果较好。

重复法(Repetition):利用接受到的最近包来重复代替丢失的包,具有低计算量和适度的音质。较长的后续丢失包可以衰减重复的包来产生。比如GSM中,丢包前20ms采用重复,后续320ms的通过衰减重复包到零。

该方式通过某种形式的模式匹配和插值技术以期望得到与原来丢包相似的代替包。该方式比插入方法实现难度要大但效果好些。该方式相对插入法的好点就是考虑到了语音的变化信息来产生信号。

波形置换法(Waveform substitution):该方式使用丢包前(可选后)的语音来找到合适的信号代替丢包。它通过单端或双端模式来确认合适的基音周期。单端模式时,基因周期重复跨越丢包区域,双端模式时需要对两边的周期进行插值。

基音波形复制法(Pitch waveform replication):这是一种带有基音周期检测算法的改进型波形置换法。它利用丢包双端的信息,在无声状态时可以重复前面的包,有声状态时重复基音波形。其效果比波形置换法要好。

时间尺度修正法(Time scale modification):该方法允许语音从丢包两端按基音周期伸展来跨越丢包区域,在两者交叠的地方进行平均。该方法计算量较大,但是效果比前面两个好些。

该方式通过丢包前后的解码信息来重构产生一个补偿包。该方式音质最好但是实现难度也是最大的。重构修复技术使用语音压缩算法的知识来获得编码参数,这样丢失的包就可以合成。该方法依赖于编码算法,但是由于有大量信息可用,效果较好,计算量也大。

传输状态插值法(Interpolation of transmitted state):对变换域编码和线性预测编码而言,解码器可以在传输状态之间进行插值。比如 ITU G.723.1对丢包两端的线性预测系数进行插值,使用原先帧的周期激励。这种方法的计算量和解码是一样的,不会增加。

基于模型的恢复法(Model-based recovery):该方法把丢包前后的语音嵌入到一个语音模型中用来产生丢失的包。有研究者采用过去的样本对语音进行自回归分析建模。这种方法的适应性是因为,第一,间隔的语音帧如果足够小(8-10ms)就有很强的相关性;第二,大部分的低比特率编码技术就是采用的自回归分析和激励信号的模型。

要获得好的丢包补偿效果就必须采用复杂的算法。上图显示了各种错误隐蔽算法的复杂度和质量对应关系,可以根据需要采用。比如带有衰减的包重复法是一种折衷方案。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,734评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,931评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,133评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,532评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,585评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,462评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,262评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,153评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,587评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,792评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,919评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,635评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,237评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,855评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,983评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,048评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,864评论 2 354

推荐阅读更多精彩内容