在 OCI 上的多节点多 GPU 集群上使用 JAX 运行深度学习工作负载

image.png

JAX是一个快速发展的 Python 库,用于高性能数值计算和机器学习 (ML) 研究。凭借在药物发现、物理 ML、强化学习和神经图形学中的应用,JAX 在过去几年中得到了令人难以置信的采用。JAX 为开发人员和研究人员提供了许多好处,包括易于使用的 NumPy API 以及与Autograd 的直接集成,以便于区分和优化。JAX 还包括通过几行代码支持跨多节点和多 GPU 系统的分布式处理,并通过NVIDIA GPU 上的XLA优化内核加速性能。

为了帮助更多客户利用 JAX 的强大功能,Oracle 和 NVIDIA 正在合作,以便在 OCI 的多节点集群上轻松设置和使用 JAX。结合 Oracle 云计算平台、NVIDIA GPU 和 RDMA 网络,您可以在云环境中利用 JAX 的可扩展性和性能优势。

在本指南中,我们将介绍如何在 OCI 上设置由NVIDIA A100 Tensor Core GPU提供支持的多节点高性能计算 (HPC) 集群,并内置对 CUDA 和SLURM的支持。我们还将介绍如何将 JAX 安装到该环境中,并开始使用多节点 JAX 代码。

将 GPU + OFED 图像导入 OCI

首先,我们将机器映像导入您的隔间,其中包括对使用 CUDA 的 GPU 计算和使用 OFED 通过以太网进行 RDMA 的支持。

在 Oracle Cloud Console 中,转到菜单,然后在“计算”部分中选择“实例”。
在侧面板中,选择“自定义图像”,然后选择“导入图像”。
选择“从对象存储 URL 导入”和“OCI”。
使用以下 URL 导入图像:

https://objectstorage.ap-osaka-1.oraclecloud.com/p/-O5UHXYmvBSvGcNBhMDH6e263KXVRPit-_wRY6D9275faFJiS2_IiovreESkWtPI/n/hpc_limited_availability/b/Obj_archive/o/OracleLinux-7-UEK-OFED- 5.4-3.1.0.0-GPU-510-2022.05.07-0

该图像可根据当前 OCI 订阅请求访问。

在 OCI 中使用 NVIDIA A100 GPU 创建多节点集群

  • 登录到 Oracle 云控制台。
  • 在菜单的市场部分,选择“所有应用程序”。
  • 搜索并选择“HPC 集群”。
  • 选择最新版本和您的 OCI 隔间。然后单击启动堆栈。
    (可选)配置您的集群名称、描述和标签。然后,单击“下一步”。
    对于您的集群配置,请使用以下设置:
  • 上传您的 SSH 公钥。如果您没有 SSH 密钥,可以使用 ssh-keygen 并按照提示生成公钥或私钥对。有关更多信息,例如生成密钥或 Windows,请参阅生成 SSH 密钥。
  • 对于头节点,选择一个可用性域,并将形状保留为默认值。将磁盘大小增加到 500 GB。
  • 对于计算节点,选择 AD 可用性,选择“BM.GPU4.8”形状(8 个 NVIDIA A100 40GB Tensor Core GPU),取消选中超线程,将启动磁盘增加到 500 GB,选择 4 作为“初始集群大小”四个节点,取消选中“使用市场图像”,然后选择您之前导入的图像。
image.png

将其他选项保留为默认值,然后单击下一步。在审核页面上,勾选“Run apply”,然后点击Create。

在菜单中,转到“资源管理器”,然后转到“堆栈”。
选择“堆栈详细信息”,然后选择“作业详细信息”。
等待应用作业完成并成功。此过程可能需要 15-45 分钟。

image.png

SSH 进入头节点并安装 Python 和 JAX

在菜单中,转到计算,然后转到实例。
找到头节点的公共 IP 地址。
通过以下命令使用 IP 地址通过 SSH 连接到根节点:ssh opc@[IP_ADDRESS]
通过运行以下命令安装 Miniconda 和 Python:

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh && bash ~/miniconda.sh -b -p ${HOME}/miniconda && ~/miniconda/bin/conda 

初始化 bash
注销并重新登录。然后使用以下命令安装

Jax:pip3 install — upgrade “jax[cuda]” -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html

使用 SLURM 运行您的第一个 JAX 代码

OCI HPC 集群预装了 SLURM,这简化了跨多个节点运行多进程作业。要使用 SLURM 运行 JAX,请创建一个包含以下内容的文件 ~/run.py:

import jax

import jax.numpy as jnp

jax.distributed.initialize()

print(f”Total devices: {jax.device_count()}, “

f”Devices per task: {jax.local_device_count()}”)

x = jnp.ones(jax.local_device_count())

# Computes a reduction (sum) across all devices of x

# and broadcast the result, in y, to all devices.

# If x=[1] on all devices and we have 32 devices,

# the result is y=[32] on all devices.

y = jax.pmap(lambda x: jax.lax.psum(x, “i”), axis_name=”i”)(x)

print(y)
From the login node, run the following command:

(base) [opc@helpful-python-bastion ~]$ srun -N 4 -n 32 — tasks-per-node=8 — gpus-per-node=8 bash -c “~/miniconda/bin/python3 ~/run.py”

You get the following output:

Total devices: 32, Devices per task: 1

[32.]

⋮

Total devices: 32, Devices per task: 1

[32.]


恭喜!您已经成功地在四个节点上运行了一个 JAX 作业,节点上有 32 个 NVIDIA A100 GPU 和总共 32 个进程。有了本指南,您就可以开始多节点 JAX 之旅了。有关 JAX 多主机处理如何工作的更多信息,请访问JAX 文档。有关 JAX GPU 工作负载的更多信息和最新更新,请注册NVIDIA 的 JAX 抢先体验计划,您可以在其中抢先了解 JAX 如何在 GPU 上更快、更大规模地运行。

总结

NVIDIA A100 80GB GPU 的加入补充了 OCI 上可用的 NVIDIA GPU 的现有阵容,包括刚刚发布的 A10 GPU,为世界各地的初创公司、企业和政府在 OCI 上开启了加速计算的新时代。并非所有工作负载都相同,有些工作负载可能需要定制才能在最新一代 GPU 硬件上以最佳方式运行。

还有 0% 的精彩内容
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
支付 ¥9.90 继续阅读
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容