基于mxnet的resnet50模型转ONNX部署的问题记录

本文记录基于mxnet训练得到的resnet50模型在转为onnx格式部署时发生的两个错误及解决办法

  1. batchnorm层 spatial参数不识别
  2. batchnorm层定义 fix_gamma=True 导致的onnx模型参数错误

环境

os: ubuntu 16.04
Mxnet : 1.6.0
onnx: 1.6.0
cuda: 10.2
cudnn: 8.0

模型转换

import os
import mxnet as mx
import numpy as np
from mxnet.contrib import onnx as onnx_mxnet

# load mxnet 模型
def LoadModel(model_file, param_file):
    symbol = mx.model.sym.load(model_file)
    param = mx.model.nd.load(param_file)

    arg_params = {}
    aux_params = {}
    for k, v in param.items():
        tp, name = k.split(':', 1)
        if tp == 'arg':
            arg_params[name] = v
        if tp == 'aux':
            aux_params[name] = v

    return symbol, arg_params, aux_params

# mxnet模型转换为onnx格式保存
def mxnet_to_onnx(mxnet_model_file, mxnet_param_file, input_shape, output_file, layer_name=None):
    sym, arg_params, aux_params, classes, net_shape, data_mean = LoadModel(mxnet_model_file, mxnet_param_file)
    if layer_name:
        layer_name += '_output'
        sym = sym.get_internals()[layer_name]
    shape = sym.infer_shape(data=input_shape)
    params = {}
    params.update(arg_params)
    params.update(aux_params)
    converted_model_path = onnx_mxnet.export_model(sym, params, [input_shape], np.float32, output_file)

tensorrt 加载onnx模型文件

import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
import numpy as np

import tensorrt as trt

class HostDeviceMem(object):
    def __init__(self, host_mem, device_mem):
        self.host = host_mem
        self.device = device_mem

    def __str__(self):
        return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)

    def __repr__(self):
        return self.__str__()
    
TRT_LOGGER = trt.Logger()

class TRTEngine(object):
    def __init__(self, onnx_file, batch_size=1, output_shape=None):
        self.engine, self.network = self.load_engine(onnx_file, batch_size)
        self.output_shape = output_shape
        
    def load_engine(self, onnx_file, batch_size=1):
        EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)

        with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
            builder.max_batch_size = batch_size
            builder.max_workspace_size = 1 << 30
            with open(onnx_file, 'rb') as model:
                if not parser.parse(model.read()):
                    for error in range(parser.num_errors):
                        print(parser.get_error(error))
            engine = builder.build_cuda_engine(network)
        print("Load onnx sucessful!")
        print(engine.num_layers)
        print(network, dir(network))
        return engine, network
    
    def allocate_buffers(self):
        inputs = []
        outputs = []
        bindings = []
        stream = cuda.Stream()
        for binding in self.engine:
            size = trt.volume(self.engine.get_binding_shape(binding)) * self.engine.max_batch_size
            dtype = trt.nptype(self.engine.get_binding_dtype(binding))
            # Allocate host and device buffers
            host_mem = cuda.pagelocked_empty(size, dtype)
            device_mem = cuda.mem_alloc(host_mem.nbytes)
            # Append the device buffer to device bindings.
            bindings.append(int(device_mem))
            # Append to the appropriate list.
            if self.engine.binding_is_input(binding):
                inputs.append(HostDeviceMem(host_mem, device_mem))
            else:
                outputs.append(HostDeviceMem(host_mem, device_mem))
        return inputs, outputs, bindings, stream

    def do_inference(self, context, bindings, inputs, outputs, stream):
        # Transfer input data to the GPU.
        [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
        # Run inference.
        context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)
        # Transfer predictions back from the GPU.
        [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
        # Synchronize the stream
        stream.synchronize()
        # Return only the host outputs.
        return [out.host for out in outputs]


    def inference(self, data):
        with self.engine.create_execution_context() as context:
            inputs, outputs, bindings, stream = self.allocate_buffers()
            inputs[0].host = data
#             print("input: ", inputs[0])
            trt_outputs = self.do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)
        
        return trt_outputs

问题记录

1. resnet50模型转换时报错

问题定位:

resnet50中使用的batchnorm层在转换至onnx时报错不支持属性spatial

解决办法:

mxnet源码mxnet/contrib/onnx/mx2onnx/_op_translation.py 359行 注释掉spatial参数

def convert_batchnorm(node, **kwargs):
    """Map MXNet's BatchNorm operator attributes to onnx's BatchNormalization operator
    and return the created node.
    """
    name, input_nodes, attrs = get_inputs(node, kwargs)

    momentum = float(attrs.get("momentum", 0.9))
    eps = float(attrs.get("eps", 0.001))

    print("input nodes:",input_nodes)
    print("name: ", name)
    bn_node = onnx.helper.make_node(
        "BatchNormalization",
        input_nodes,
        [name],
        name=name,
        epsilon=eps,
        momentum=momentum,
        # MXNet computes mean and variance per feature for batchnorm
        # Default for onnx is across all spatial features. So disabling the parameter.
        #spatial=0
    )
    return [bn_node]

2.resnet50 转为onnx后执行推理计算结果不对

问题定位: resnet50中对输入图片的batchnorm层在mxnet中定义时使用了参数fix_gamma=True, 导致转为onnx格式后, batchnorm的scale参数(即gamma参数)变为0, 从而使输入数据全部清零只输出了偏移量

通过netron.app 查看网络结构, 看到第一个batchnorm层(bn_data)的参数bn_data_gamma异常:


image.png
解决办法:

在onnx模型中手动修改bn_data层的gamma参数为1.0

import onnx
import numpy as np
def fix_batchnorm_error(onnx_file, new_onnx_file):
    model = onnx.load(onnx_file)
    weights = model.graph.initializer
    
    #weight[0] 为bn_data_gamma
    weights[0].float_data[0] = 1.0
    weights[0].float_data[1] = 1.0
    weights[0].float_data[2] = 1.0

    onnx.save(model, new_onnx_file)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,122评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,070评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,491评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,636评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,676评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,541评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,292评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,211评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,655评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,846评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,965评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,684评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,295评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,894评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,012评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,126评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,914评论 2 355

推荐阅读更多精彩内容