torch.dot()
torch.dot(input, tensor) → Tensor
#计算两个张量的点积(内积)
#官方提示:不能进行广播(broadcast(即维度不同时,可以扩展成相同的维度相乘)).
#example
>>> torch.dot(torch.tensor([2, 3]), torch.tensor([2, 1])) #即对应位置相乘再相加
tensor(7)
>>> torch.dot(torch.rand(2, 3), torch.rand(2, 2))
#报错,只允许一维的tensor
RuntimeError: 1D tensors expected, got 2D, 2D tensors at /Users/distiller/project/conda/conda-bld/pytorch_1570710797334/work/aten/src/TH/generic/THTensorEvenMoreMath.cpp:774
torch.mm()
只能让两个二维tensor作矩阵乘法。
torch.mm(input, mat2, out=None) → Tensor
#对矩阵imput和mat2执行矩阵乘法。 如果input为(n x m)张量,则mat2为(m x p)张量,out将为(n x p)张量。
#官方提示此功能不广播。有关广播的矩阵乘法,请参见torch.matmul()。
#example
>>> mat1 = torch.randn(2, 3)
>>> mat2 = torch.randn(3, 3)
>>> torch.mm(mat1, mat2)
tensor([[ 0.4851, 0.5037, -0.3633],
[-0.0760, -3.6705, 2.4784]])
torch.matmul()
torch.matmul()是tensor的乘法,输入可以是高维的。
torch.matmul(input, other, out=None) → Tensor
#两个张量的矩阵乘积。行为取决于张量的维数,如下所示:
#1. 如果两个张量都是一维的,则返回点积(标量)。
>>> # vector x vector
>>> tensor1 = torch.randn(3)
>>> tensor2 = torch.randn(3)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([])
#2. 如果两个参数都是二维的,则返回矩阵矩阵乘积。
# matrix x matrix
>>> tensor1 = torch.randn(3, 4)
>>> tensor2 = torch.randn(4, 5)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([3, 5])
#3. 如果第一个参数是一维的,而第二个参数是二维的,则为了矩阵乘法,会将1附加到其维数上。矩阵相乘后,将删除前置尺寸。
# 也就是让tensor2变成矩阵表示,1x3的矩阵和 3x4的矩阵,得到1x4的矩阵,然后删除1
>>> tensor1 = torch.randn(3, 4)
>>> tensor2 = torch.randn(3)
>>> torch.matmul(tensor2, tensor1).size()
torch.Size([4])
#4. 如果第一个参数为二维,第二个参数为一维,则返回矩阵向量乘积。
# matrix x vector
>>> tensor1 = torch.randn(3, 4)
>>> tensor2 = torch.randn(4)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([3])
#5. 如果两个自变量至少为一维且至少一个自变量为N维(其中N> 2),则返回批处理矩阵乘法。如果第一个参数是一维的,则在其维数之前添加一个1,以实现批量矩阵乘法并在其后删除。如果第二个参数为一维,则将1附加到其维上,以实现成批矩阵倍数的目的,然后将其删除。非矩阵(即批量)维度可以被广播(因此必须是可广播的)。例如,如果input为(jx1xnxm)张量,而other为(k×m×p)张量,out将是(j×k×n×p)张量。
>>> # batched matrix x broadcasted vector
>>> tensor1 = torch.randn(10, 3, 4)
>>> tensor2 = torch.randn(4)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([10, 3])
>>> # batched matrix x batched matrix
>>> tensor1 = torch.randn(10, 3, 4)#相当于把第0维当作一个batch,故有十个batch;后两维进行矩阵乘法
>>> tensor2 = torch.randn(10, 4, 5)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([10, 3, 5])
>>> # batched matrix x broadcasted matrix
>>> tensor1 = torch.randn(10, 3, 4)#看作batch单位的矩阵乘法
>>> tensor2 = torch.randn(4, 5)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([10, 3, 5])
>>> tensor1 = torch.randn(10, 1, 3, 4)
>>> tensor2 = torch.randn(2, 4, 5)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([10, 2, 3, 5])
broadcasting机制
一定要注意,执行 broadcast 的前提在于,两个 ndarray 执行的是 element-wise(按位加,按位减) 的运算,而不是矩阵乘法的运算,矩阵乘法运算时需要维度之间严格匹配。
当操作两个array时,numpy会逐个比较它们的shape(构成的元组tuple),只有在下述情况下,两arrays才算兼容:
- 相等
- 其中一个为1,(进而可进行拷贝拓展已至,shape匹配)
具体参考4
参考链接:
- https://blog.csdn.net/GhostintheCode/article/details/102556860?utm_medium=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.nonecase&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.nonecase
- https://blog.csdn.net/qsmx666/article/details/105783610
- https://blog.csdn.net/weixin_42105432/article/details/100691592?utm_medium=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.nonecase&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.nonecase
- https://blog.csdn.net/lanchunhui/article/details/50158975