百度7天图计算学习

# 图计算

# 图的基础知识

## 什么是图

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606719035683-741f2c1b-268d-429a-a97f-1165239c0d58.png#align=left&display=inline&height=350&margin=%5Bobject%20Object%5D&name=image.png&originHeight=699&originWidth=1685&size=694904&status=done&style=none&width=842.5)

## 图的分类

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606707788498-850c04fe-9b8d-4299-b50f-ac6b2493932c.png#align=left&display=inline&height=301&margin=%5Bobject%20Object%5D&name=image.png&originHeight=602&originWidth=1427&size=200225&status=done&style=none&width=713.5)

- 有向图:有指示方向

- 有权图:每条边有各自的权重

- **同构图**(Homogeneous Graph)数据中只存在一种节点和边,因此在构建神经网络时所有节点共享同样的模型参数并且拥有同样维度的特征空间。

- **异构图**(Heterogeneous Graph)中可以存在不只一种节点和边,因此允许不同类型的节点拥有不同维度的特征或属性。

## 同构图和异构图的差异

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606718193162-64137905-205b-4c9f-8c2d-7c19fa794416.png#align=left&display=inline&height=344&margin=%5Bobject%20Object%5D&name=image.png&originHeight=687&originWidth=1438&size=119814&status=done&style=none&width=719)

- 同构图只存在一种行为/关系

- 异构图存在多种行为/关系

## 度和邻居

### 度

一个顶点的度(degree)指与该顶点关联的边的数目。当边有权重时,就是所有边的权重和。记做deg(v)deg(v)。

在有向图中,还有出度(out-degree)和入度(in-degree)的概念。

出度(out-degree)指以该顶点为起点的边的权重和,入度(in-degree)指的是以该顶点为终点的边的权重和。

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606718611003-5e280114-6be1-4325-8de6-0b01af0a10c7.png#align=left&display=inline&height=295&margin=%5Bobject%20Object%5D&name=image.png&originHeight=590&originWidth=1580&size=186721&status=done&style=none&width=790)

## 邻接矩阵

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606718649685-f6b401f3-a10f-4b2d-9588-f651b8c7c155.png#align=left&display=inline&height=113&margin=%5Bobject%20Object%5D&name=image.png&originHeight=226&originWidth=1085&size=35734&status=done&style=none&width=542.5)

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606718663293-08c19dec-7d30-4d94-b0fe-3c0c52f49798.png#align=left&display=inline&height=233&margin=%5Bobject%20Object%5D&name=image.png&originHeight=466&originWidth=1110&size=62503&status=done&style=none&width=555)

对应的关联矩阵

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606718686535-b8738ec0-3b76-479b-9a83-a3e50451885f.png#align=left&display=inline&height=286&margin=%5Bobject%20Object%5D&name=image.png&originHeight=571&originWidth=745&size=26296&status=done&style=none&width=372.5)

举例:

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606718712742-f26d633e-6d87-409c-b191-cc9ffa3da838.png#align=left&display=inline&height=370&margin=%5Bobject%20Object%5D&name=image.png&originHeight=740&originWidth=1439&size=190435&status=done&style=none&width=719.5)

## 邻接表

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606718808995-bdff0628-5dcf-4964-9c1e-263296207847.png#align=left&display=inline&height=239&margin=%5Bobject%20Object%5D&name=image.png&originHeight=477&originWidth=1444&size=128789&status=done&style=none&width=722)

转换成邻接表时,需注意无向图还是有向图

## 边集

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606718942183-3da95dba-b61a-4f26-b38c-2168474adec3.png#align=left&display=inline&height=259&margin=%5Bobject%20Object%5D&name=image.png&originHeight=517&originWidth=1235&size=91424&status=done&style=none&width=617.5)

## 结构特征、节点特征、边特征

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606718969767-d5261730-f3e9-4df8-8699-eb7d5bb5afa7.png#align=left&display=inline&height=308&margin=%5Bobject%20Object%5D&name=image.png&originHeight=615&originWidth=1551&size=200917&status=done&style=none&width=775.5)

# 图学习

## 什么是图学习

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606719473736-32d2cfdb-249d-420f-9943-4ee5dbcc5a13.png#align=left&display=inline&height=336&margin=%5Bobject%20Object%5D&name=image.png&originHeight=672&originWidth=1529&size=527688&status=done&style=none&width=764.5)

## 图学习的优势

## ![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606719530602-82de9927-fc03-4547-9621-5a493a708ed6.png#align=left&display=inline&height=312&margin=%5Bobject%20Object%5D&name=image.png&originHeight=624&originWidth=1079&size=512500&status=done&style=none&width=539.5)

## 图学习的应用

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606719563360-d93572ce-653d-4798-8a31-325bd90ac7b9.png#align=left&display=inline&height=240&margin=%5Bobject%20Object%5D&name=image.png&originHeight=481&originWidth=1097&size=76136&status=done&style=none&width=548.5)

### 节点级任务

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606719598020-f16e6a59-30f8-4722-b65f-2d14746fe97c.png#align=left&display=inline&height=251&margin=%5Bobject%20Object%5D&name=image.png&originHeight=501&originWidth=1331&size=165467&status=done&style=none&width=665.5)

### 边级别任务

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606719638218-40552f4b-ee47-4a09-bc87-a0ace0a57003.png#align=left&display=inline&height=297&margin=%5Bobject%20Object%5D&name=image.png&originHeight=594&originWidth=1385&size=314049&status=done&style=none&width=692.5)

### 图级别任务

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606719759494-e0eb368a-e284-43c1-b933-6eb690b61399.png#align=left&display=inline&height=242&margin=%5Bobject%20Object%5D&name=image.png&originHeight=483&originWidth=1241&size=255533&status=done&style=none&width=620.5)

# 图游走类算法

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606719846623-ffcf4744-bbf2-43d6-aa3d-c6078198569b.png#align=left&display=inline&height=277&margin=%5Bobject%20Object%5D&name=image.png&originHeight=554&originWidth=1643&size=153598&status=done&style=none&width=821.5)

**图游走类算法最开始基于NLP 领域中的 Word2vec 模型**

## Word2vec: Skip Gram

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606719921485-545efc18-5b4c-447d-86b8-b364532a3906.png#align=left&display=inline&height=342&margin=%5Bobject%20Object%5D&name=image.png&originHeight=683&originWidth=1406&size=195400&status=done&style=none&width=703)

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606719955455-a0c0436c-4806-4a47-8eaf-c620ba6edece.png#align=left&display=inline&height=381&margin=%5Bobject%20Object%5D&name=image.png&originHeight=761&originWidth=1614&size=242016&status=done&style=none&width=807)

![image.png](https://cdn.nlark.com/yuque/0/2020/png/448161/1606719986075-6b36966c-ce58-4da9-9bfd-287574b612cd.png#align=left&display=inline&height=378&margin=%5Bobject%20Object%5D&name=image.png&originHeight=755&originWidth=1348&size=91293&status=done&style=none&width=674)

## DeepWalk

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容