写完第一篇
人人都能搞懂的AI(一)
,感觉神清气爽,而且似乎领悟到了一个道理,知识需要一个层级一个层级的加工,我现在在做的,就是把老师的课程提炼成我理解的内容,下一步可以再加工成观点,甚至是其他项目的评价,行业发展的分析,所以第二篇来了~本文主要讲解:
项目的工作流
如何选择AI项目
如何组织数据和团队
先看智能音箱的例子,如何通过一句Hello, Alexa来唤醒音箱。
首先是收集数据,如果只是服务美国地区,那就尽可能找当地人录制Alexa,和hello这两个单词的语音,如果是服务世界范围,那就需要采集更大量级,更多样性的语音数据。
第二步训练模型,把足够多的训练数据导入系统,然后直到测试组的数据准确率达到预期水平。
第三步部署模型,上线后会收集到很多新的数据,清洗后可以用来进一步训练模型。
就比如一个销售杯子的网站,可以通过分析用户行为数据,来优化购买流程。
最近发现个很好的行为监测工具叫Heap,而不是以前的流量监测工具如Google Analytics。可以无埋点监测到细致入微的行为数据,比如有些按钮是动态的,这工具都可以监控,用户点击按钮时,这按钮上显示为什么文字,然后进行各种纬度的漏斗分析。
回到工作流,
第一步收集数据,可以按照5w1h思维框架去收集,比如谁在什么时间/什么地点/做了一件什么事儿;
第二步分析数据,比如发现用户在家里的电脑购买东西多时间长,而在公司电脑购买东西少而且时间短,这样就可以针对不同场景去优化购买行为;
这里有2种分析方式,一种通过经验去分析验证(如同期分析/AB测试),一种是可以通过无监督学习-一种机器学习算法,找到目标用户的特征(后面会讲到);
第三步提出假设/行动,把假设部署到线上,看实际的用户行为数据是否受到影响,然后再看数据进一步优化。
工业生产领域也是一样的,可以收集生产过程种的重要数据,来看在何种条件下生产环境(如温度/湿度/材料)下次品率最低,来达到提高生产效率的结果。
比如销售,要知道打电话的优先级,这里AI可以帮你排序;
比如生产线,要知道哪个杯子有瑕疵,AI可以通过图像识别判断;
比如招聘,想知道哪个简历可以直接发面试邀请,AI可以训练出这样的模型;
比如网站内容,以前会通过AB测试那种最好,现在可以让AI自己判断,个性化展示;
比如农业种植,想知道哪里有杂草,AI可以自动判断位置,如下图,在知乎上看到的一个案例,精准识别咋造,定向喷农药,不仅清除彻底,还能节省90%的药水。
这家农业人工智能公司叫蓝河(Blue River),是创立于 2011 年的 60 人硅谷高科技公司,2017 年 9 月被约翰迪尔以 3.05 亿美金拿下。
之前都是在阐述AI可以做什么,因为懂得原理,才能知道AI的边界或者AI项目的难易程度,然后再去判断自己擅长的领域和AI可以怎样的结合,这样诞生的AI项目才是有前景有可行性的。
当有了一个点子之后,可以通过头脑风暴来细化,核心就在于拆解和挑重点。
拆解:比如客服中心,别一上来就AI取代客服,AI真的擅长的只是分配线路,比如客户来电,可以通过简单的对话,了解客服的需求类型,然后转接给对应的人工客服。就是把一个大类的工作拆成一个个任务,然后逐步通过AI来解决。
挑重点:不要因为AI可以做的事情就忽视了商业的初衷,先看商业价值的核心驱动力是什么,现有生意的核心点是什么,然后通过AI有针对性的去解决。
如何确定这个项目是值得投入的?-尽职调查:技术层面,商业层面和道德层面
技术层面:1.可行性 2.数据量 3.工程进度
商业层面:1.降低成本? 2.提高利润? 3.构造新产品or新的商业模式?
道德层面:是否有利于社会发展/行业发展
机器学习项目有些是适合外包的,因为可以抽象成很具体的任务,而且涉及的数据不敏感,外包也比较容易通过测试数据衡量算法的效果。
但数据科学的部分,最好都自己做,因为数据敏感,其次只有足够多的数据汇聚在一起,并且打通,才能实现其最大价值。
要约定好考核标准,比如目标:发现瑕疵,要保证95%的准确率。
其次的话要提供给AI团队一份测试数据,来衡量他们的准确率。
还有一个重点是,机器学习没法保证100%的准确率,只能是随着数据量无限增大,准确率就会无限接近100%。
如下都是开源的机器学习框架,TenserFlow是Google推出的,PyTorch是Facebook推出的,大部分都是基于这2个框架再次封装的框架。
机器学习算法的部署方式目前有2种:
云端(Cloud Deployment):优点是随时随地训练(进化),性能优越(可拓展)
边缘部署(Edge Deployment):部分识别算法部署在本地(即正在使用的设备当中),如智能音箱和无人驾驶,这样可以保证最及时的响应。
内置部署(On-premises Deployment):比如一个企业内部的识别算法,就使用自己搭建的本地服务器来运行识别算法。
最后,总感觉还要再啰嗦点什么。学了这么多知识就应该用啊,所以我想找个AI项目分析一下,刚好前段时间看朋友圈有人分享一个APP,叫
叨叨记账
,说是AI恋人帮你记账。那我们来看看它是否通过AI实现了商业价值。记账这事儿最核心的是能把每一笔都清晰的记下来,记下来才有数据,才能知道这一段时间钱都花在哪儿了,才会产生粘性,以至于之后的留存和商业变现。
所以看下图,传统记账 vs AI记账,并没有想象的那么神奇,但是会觉得明显比传统的更温情更有趣一点,核心在于这样一个虚拟角色(监督者)的搭建,会让原本枯燥的事情变得更容易接受。
而其中对于AI价值的运用,可以说非常之少,首先输入数据非常单一,大部分都是花费类别+金额,无法根据太多的信息去训练回复的内容,所以很容易导致后期对回复内容审美疲劳。但其实这也不重要了,用户已经获取到了,甚至习惯都已经培养好了。
所以严格来说,这不算一个AI项目,只是用了一个最原始的if else就可以实现的效果,包装成了一个好像有感情的AI(吸引了大批爱豆脑残粉)。
突然想到《
人工智障 2
》里的一句话,正好可以用来表达我的观点,AI的产品经理就像一个魔术师,表演着这样一个满足用户期待的魔术,所以,向艺术致敬~