ARIMA模型——MATLAB实现

arma()

功能:估计ARMA时间序列模型参数
格式:
m = armax(data, orders);
m = armax(data, 'na', na, 'nb', nb, 'nc', nc, 'nk', nk)
m = armax(data, orders, 'Property1', Value1,..., 'PropertyN', ValueN)

说明
模型描述为 A(q)y(t)=B(q)u(t-nk)+C(q)e(t)
data:输入/输出时间序列
orders:ARMA模型阶数结构,形式为orders = [na nb nc nk]
其中na,nb,nc为模型参数,nk为延迟。
property:模型估计时的参数设置

xcorr()和autocorr()

摘自博客
例如:A=[1,2,3,4] xcorr(A)=[4,10,20,30,20,10,4]
注:xcorr.length=A.lenth*2-1 ,且为对称

上面的矩阵,最后得到7个结果,其中第4个值最大11+22+33+44 = 30 。而第三个和第五个分别是间隔正负1的结果也就是12+23+34 = 20,21+32+43 = 20 。第二个和第六个分别是间隔正负2也就是13+24=11,31+42 = 11。第一个和第七个分别是间隔正负3也就是14 = 4 ,41=4

autocorr(Series,nLags,M,nSTDs) //计算并绘制时间序列的自相关函数

Series为时间序列
nLags--延迟,当nLags=[]或缺省时,计算ACF时在延迟点0、1、2、。。。、T处,T=min([20 length(Series-1)])
M--非负整数,表示在多大延迟时理论ACF为0.autocorr假设序列为MA(M),并且使用Bartlett估计方法来计算大于M的延迟的标准误差。如果M=[]或缺省,则为0,函数假设序列为高斯白噪声。
nSTDs--样本ACF估计误差的标准差。
ACF--样本自相关函数
Lags--与ACF(0,1,2,。。。,nLags)相对应的延迟
Bounds--置信区间的近似上下限,假设序列为MA(M)过程。

autocorr是对序列减去均值后做的自相关,最后又进行了归一化。而且由于自相关本身是偶函数,autocorr只是取了以中点n为起始的后面n个序列。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353

推荐阅读更多精彩内容